Nothing
Here we quickly show how the data objects of the example data set can be reproduced.
library("recount3") library("DESeq2") library("dplyr") library("stringr") library("SummarizedExperiment") library("tidyr") library("tibble") library("magrittr")
# download data recount3 proj_info <- available_projects() %>% filter(project == "SRP093386") se <- create_rse(proj_info) count_mat <- compute_read_counts(se) rownames(count_mat) <- str_replace(rownames(count_mat), "\\.[:number:]+$", "") meta <- colData(se) %>% as_tibble() %>% separate(sra.sample_title, into = c("cell_line", "treatment", "mutation", "replicate"), sep = "-") %>% select(cell_line, treatment, mutation, replicate) colnames(count_mat) <- paste0(meta$treatment, "_", meta$mutation, "_", meta$replicate) # subset to cell line T47D count_mat <- count_mat[, meta$cell_line == "T47D"] meta <- meta[meta$cell_line == "T47D", c("treatment", "mutation", "replicate")] T47D <- make_dds(count_mat, meta, ah_record = "AH89426") T47D <- T47D[rowSums(assay(T47D))>0,] # round some numeric data to reduce the size of the data object rowData(T47D)$gc_content <- round(rowData(T47D)$gc_content,1)
dds <- T47D dds <- filter_genes(dds, min_count = 5, min_rep = 4) dds$mutation <- as.factor(dds$mutation) dds$treatment <- as.factor(dds$treatment) design(dds) <- ~ mutation + treatment # to not run DESeq2 in the main vignette, # wo pre-compute the dispersion plot and diff testing results dds <- DESeq(dds, parallel=T) png(filename="disp_ests.png", width=7, height=5, units="in", res=200) plotDispEsts(dds) dev.off() T47D_diff_testing <- lfcShrink(dds, coef = "mutation_WT_vs_D538G", lfcThreshold = log2(1.5), type = "normal", parallel = TRUE) T47D_diff_testing$stat <- NULL T47D_diff_testing$lfcSE <- NULL T47D_diff_testing$pvalue <- NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.