Description Usage Arguments Details Value Author(s) References Examples
This function list all of the Oracle Data Mining models in the user's schema in the Oracle database.
1 | RODM_list_dbms_models(database)
|
database |
Database ODBC channel identifier returned from a call to RODM_open_dbms_connection |
This function list all of the Oracle Data Mining models in the user's schema in the database. For each model, this function returns the model name, mining function (type of operation), algorithm, date the model was created, time it took to build the model (in seconds), size of the model (in megabytes), and comments associated with the model (if any).
List of the following information:
MODEL_NAME |
Name of the model. |
MINING_FUNCTION |
Mining function used when building the model. |
ALGORITHM |
Algorithm used when building the model. |
CREATION_DATE |
Date the model was created. |
BUILD_DURATION |
Duration to build the model in seconds. |
MODEL_SIZE |
Size of the model in MB. |
COMMENTS |
Comments associated with the model, if any. |
Pablo Tamayo pablo.tamayo@oracle.com
Ari Mozes ari.mozes@oracle.com
Oracle Data Mining Concepts 11g Release 1 (11.1) http://download.oracle.com/docs/cd/B28359_01/datamine.111/b28129/toc.htm
Oracle Data Mining Application Developer's Guide 11g Release 1 (11.1) http://download.oracle.com/docs/cd/B28359_01/datamine.111/b28131/toc.htm
Oracle Data Mining Administrator's Guide 11g Release 1 (11.1) http://download.oracle.com/docs/cd/B28359_01/datamine.111/b28130/toc.htm
Oracle Database PL/SQL Packages and Types Reference 11g Release 1 (11.1) http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28419/d_datmin.htm#ARPLS192
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | ## Not run:
DB <- RODM_open_dbms_connection(dsn="orcl11g", uid= "rodm", pwd = "rodm")
data(titanic3, package="PASWR") # Load survival data from Titanic
ds <- titanic3[,c("pclass", "survived", "sex", "age", "fare", "embarked")] # Select subset of attributes
ds[,"survived"] <- ifelse(ds[,"survived"] == 1, "Yes", "No") # Rename target values
n.rows <- length(ds[,1]) # Number of rows
set.seed(seed=6218945)
random_sample <- sample(1:n.rows, ceiling(n.rows/2)) # Split dataset randomly in train/test subsets
titanic_train <- ds[random_sample,] # Training set
titanic_test <- ds[setdiff(1:n.rows, random_sample),] # Test set
RODM_create_dbms_table(DB, "titanic_train") # Push the training table to the database
RODM_create_dbms_table(DB, "titanic_test") # Push the testing table to the database
# Create an ODM Naive Bayes model
nb <- RODM_create_nb_model(
database = DB, # Database ODBC channel identifier
model_name = "titanic_nb_model", # ODM model name
data_table_name = "titanic_train", # (in quotes) Data frame or database table containing the input dataset
target_column_name = "survived") # Target column name in data_table_name
# Create an ODM Attribute Importance model
ai <- RODM_create_ai_model(
database = DB, # Database ODBC channel identifier
model_name = "titanic_ai_model", # ODM model name
data_table_name = "titanic_train", # (in quotes) Data frame or database table containing the input dataset
target_column_name = "survived") # Target column name in data_table_name
# List the models
mlist <- RODM_list_dbms_models(DB)
mlist
RODM_drop_model(DB, "titanic_nb_model")
RODM_drop_model(DB, "titanic_ai_model")
RODM_drop_dbms_table(DB, "titanic_train")
RODM_drop_dbms_table(DB, "titanic_test")
RODM_close_dbms_connection(DB)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.