GEV | R Documentation |
GEV distribution in OOP way. Based on AbstractDist
See AbstractDist for generic methods
ROOPSD::AbstractDist
-> GEV
loc
[double] location of the GEV law
scale
[double] scale of the GEV law
shape
[double] shape of the GEV law
params
[vector] params of the GEV law
ROOPSD::AbstractDist$cdf()
ROOPSD::AbstractDist$density()
ROOPSD::AbstractDist$diagnostic()
ROOPSD::AbstractDist$fit()
ROOPSD::AbstractDist$icdf()
ROOPSD::AbstractDist$isf()
ROOPSD::AbstractDist$logdensity()
ROOPSD::AbstractDist$pdeltaCI()
ROOPSD::AbstractDist$qdeltaCI()
ROOPSD::AbstractDist$rvs()
ROOPSD::AbstractDist$sf()
new()
Create a new GEV object.
GEV$new(loc = 0, scale = 1, shape = -0.1)
loc
[double] location parameter
scale
[double] scale parameter
shape
[double] shape parameter
A new 'GEV' object.
qgradient()
Gradient of the quantile function
GEV$qgradient(p, lower.tail = TRUE)
p
[vector] Probabilities
lower.tail
[bool] If CDF or SF.
[vector] gradient
pgradient()
Gradient of the CDF function
GEV$pgradient(x, lower.tail = TRUE)
x
[vector] Quantiles
lower.tail
[bool] If CDF or SF.
[vector] gradient
clone()
The objects of this class are cloneable with this method.
GEV$clone(deep = FALSE)
deep
Whether to make a deep clone.
## Generate sample
loc = 0
scale = 0.5
shape = -0.3
gev = ROOPSD::GEV$new( loc = loc , scale = scale , shape = shape )
X = gev$rvs( n = 1000 )
## And fit parameters
gev$fit(X)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.