| GEV | R Documentation |
GEV distribution in OOP way. Based on AbstractDist
See AbstractDist for generic methods
ROOPSD::AbstractDist -> GEV
loc[double] location of the GEV law
scale[double] scale of the GEV law
shape[double] shape of the GEV law
params[vector] params of the GEV law
ROOPSD::AbstractDist$cdf()ROOPSD::AbstractDist$density()ROOPSD::AbstractDist$diagnostic()ROOPSD::AbstractDist$fit()ROOPSD::AbstractDist$icdf()ROOPSD::AbstractDist$isf()ROOPSD::AbstractDist$logdensity()ROOPSD::AbstractDist$pdeltaCI()ROOPSD::AbstractDist$qdeltaCI()ROOPSD::AbstractDist$rvs()ROOPSD::AbstractDist$sf()new()Create a new GEV object.
GEV$new(loc = 0, scale = 1, shape = -0.1)
loc[double] location parameter
scale[double] scale parameter
shape[double] shape parameter
A new 'GEV' object.
qgradient()Gradient of the quantile function
GEV$qgradient(p, lower.tail = TRUE)
p[vector] Probabilities
lower.tail[bool] If CDF or SF.
[vector] gradient
pgradient()Gradient of the CDF function
GEV$pgradient(x, lower.tail = TRUE)
x[vector] Quantiles
lower.tail[bool] If CDF or SF.
[vector] gradient
clone()The objects of this class are cloneable with this method.
GEV$clone(deep = FALSE)
deepWhether to make a deep clone.
## Generate sample
loc = 0
scale = 0.5
shape = -0.3
gev = ROOPSD::GEV$new( loc = loc , scale = scale , shape = shape )
X = gev$rvs( n = 1000 )
## And fit parameters
gev$fit(X)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.