| Normal | R Documentation |
Normal distribution in OOP way. Based on AbstractDist
See AbstractDist for generic methods
ROOPSD::AbstractDist -> Normal
mean[double] mean of the normal law
sd[double] standard deviation of the normal law
params[vector] params of the normal law
ROOPSD::AbstractDist$cdf()ROOPSD::AbstractDist$density()ROOPSD::AbstractDist$diagnostic()ROOPSD::AbstractDist$fit()ROOPSD::AbstractDist$icdf()ROOPSD::AbstractDist$isf()ROOPSD::AbstractDist$logdensity()ROOPSD::AbstractDist$pdeltaCI()ROOPSD::AbstractDist$qdeltaCI()ROOPSD::AbstractDist$qgradient()ROOPSD::AbstractDist$rvs()ROOPSD::AbstractDist$sf()new()Create a new Normal object.
Normal$new(mean = 0, sd = 1)
mean[double] Mean of the normal law
sd[double] Standard deviation of the normal law
A new 'Normal' object.
clone()The objects of this class are cloneable with this method.
Normal$clone(deep = FALSE)
deepWhether to make a deep clone.
## Generate sample
mean = 1
sd = 0.5
norml = ROOPSD::Normal$new( mean = mean , sd = sd )
X = norml$rvs( n = 1000 )
## And fit parameters
norml$fit(X)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.