GPD | R Documentation |
GPD distribution in OOP way. Based on AbstractDist
See AbstractDist for generic methods
ROOPSD::AbstractDist
-> GPD
loc
[double] location of the GPD law, fixed
scale
[double] scale of the GPD law
shape
[double] shape of the GPD law
params
[vector] params of the GPD law
ROOPSD::AbstractDist$cdf()
ROOPSD::AbstractDist$density()
ROOPSD::AbstractDist$diagnostic()
ROOPSD::AbstractDist$icdf()
ROOPSD::AbstractDist$isf()
ROOPSD::AbstractDist$logdensity()
ROOPSD::AbstractDist$pdeltaCI()
ROOPSD::AbstractDist$qdeltaCI()
ROOPSD::AbstractDist$qgradient()
ROOPSD::AbstractDist$rvs()
ROOPSD::AbstractDist$sf()
new()
Create a new GPD object.
GPD$new(loc = 0, scale = 1, shape = -0.1)
loc
[double] location parameter
scale
[double] scale parameter
shape
[double] shape parameter
A new 'GPD' object.
fit()
Fit method
GPD$fit(Y, loc = NULL)
Y
[vector] Dataset to infer the histogram
loc
[double] location parameter, if NULL used min(Y)
'self'
clone()
The objects of this class are cloneable with this method.
GPD$clone(deep = FALSE)
deep
Whether to make a deep clone.
## Generate sample
loc = 0
scale = 0.5
shape = -0.3
gpd = ROOPSD::GPD$new( loc = loc , scale = scale , shape = shape )
X = gpd$rvs( n = 1000 )
## And fit parameters
gpd$fit( X , loc = 0 )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.