R/anova.lm.rrpp.r

Defines functions anova.lm.rrpp

Documented in anova.lm.rrpp

#' ANOVA for lm.rrpp model fits
#'
#' @description Computes an analysis of variance (ANOVA) table using 
#' distributions of random statistics from \code{\link{lm.rrpp}}.  
#' ANOVA can be performed on one model or multiple models.  
#' If the latter, the first model is considered a null model for 
#' comparison to other models.  The ANOVA is functionally similar to a 
#' non-parametric likelihood ratio test for all null-full model comparisons
#' Residuals from the null model will be used to generate random pseudo-values 
#' via RRPP for evaluation of subsequent models. The permutation schedule from 
#' the null model will be used for random permutations.
#' This function does not correct for improper null models.  One must assure 
#' that the null model is nested within the other models.  Illogical results 
#' can be generated if this is not the case.
#'
#' @param object Object from \code{\link{lm.rrpp}}
#' @param ... Additional lm.rrpp model fits or other arguments passed to anova. 
#' @param effect.type One of "F", "cohenf", "SS", "MS", "Rsq" to choose from 
#' which distribution of statistics to calculate effect sizes (Z).  
#' See \code{\link{lm.rrpp}}.
#' @param error An optional character string to define MS error term for 
#' calculation of F values. See \code{\link{lm.rrpp}} for examples.
#' @param print.progress A logical argument if multiple models are used and 
#' one wishes to view progress for sums of squares (SS) calculations.
#' @export anova.lm.rrpp
#' @export
#' @author Michael Collyer
#' @keywords utilities
#' @examples 
#' \dontrun{
#' # See examples for lm.rrpp to see how anova.lm.rrpp works in conjunction
#' # with other functions
#' 
#' data(Pupfish)
#' names(Pupfish)
#' Pupfish$logSize <- log(Pupfish$CS) # better to not have functions in formulas
#'
#'# Single-Model ANOVA
#' 
#' fit <- lm.rrpp(coords ~ logSize + Sex*Pop, SS.type = "I", 
#' data = Pupfish, print.progress = FALSE, iter = 999) 
#' anova(fit)
#' anova(fit, effect.type = "MS")
#' anova(fit, effect.type = "Rsq")
#' anova(fit, effect.type = "cohenf")
#' 
#' # Multi-Model ANOVA (like a Likelihood Ratio Test)
#' fit.size <- lm.rrpp(coords ~ logSize, SS.type = "I", data = Pupfish, 
#' print.progress = FALSE, iter = 999) 
#' fit.sex <- lm.rrpp(coords ~ logSize + Sex, SS.type = "I", data = Pupfish, 
#' print.progress = FALSE, iter = 999) 
#' fit.pop <- lm.rrpp(coords ~ logSize + Pop, SS.type = "I", data = Pupfish, 
#' print.progress = FALSE, iter = 999) 
#' anova(fit.size, fit.sex, fit.pop, 
#' print.progress = FALSE) # compares two models to the first
#' 
#' # see lm.rrpp examples for mixed model ANOVA example and how to vary SS type
#' }
#' 
anova.lm.rrpp <- function(object, ...,
                          effect.type = c("F", "cohenf", "SS", "MS", "Rsq"),
                          error = NULL, print.progress = TRUE) {
  effect.type <- match.arg(effect.type)
  if(object$PermInfo$full.resid && effect.type != "F") {
    effect.type = "F"
    warning(
      paste(
        "\nThis is not an error!  It is a friendly warning.\n",
        "\nBecause permutation of full model residuals was chosen,",
        "\nthe effect size type must be focrced to be F to have appropriate effect sizes.\n",
        "\nUse options(warn = -1) to turn off these warnings. \n\n", sep = " "),
      noBreaks. = TRUE, call. = FALSE, immediate. = TRUE) 
  }
  
  dots <- list(...)
  lm.check <- sapply(dots, inherits, "lm.rrpp")
  if(any(lm.check)) {
    lm.list <- dots[lm.check]
    out <- aov.multi.model(object, lm.list, 
                           effect.type = effect.type, 
                           print.progress = print.progress)
  } else out <- aov.single.model(object, ...,
                          effect.type = effect.type,
                          full.resid = object$PermInfo$full.resid,
                          error = error)
  out
}
  

Try the RRPP package in your browser

Any scripts or data that you put into this service are public.

RRPP documentation built on June 22, 2024, 6:45 p.m.