Nothing
#' K-component analysis
#'
#' Function performs a K-comonent analysis, which is an eigen decomposition
#' of a ratio of ordinary least-squares (OLS) to generalized least squares (GLS)
#' covariance matrices.
#'
#' The function performs a K-component analysis (KCA), as described in Mitteroecker et al. (2025).
#' The analysis is similar to many that can be performed with the \code{\link{ordinate}} function,
#' but whereas that function finds ordinate scores for a rotation or shear of a data space, KCA performs
#' a relative eigen decomposition of a matrix product that represents a ratio between two covariance
#' matrices (Mitteroecker and Bookstein, 2014). The eigenvalues are helpful for understanding the importance
#' of the GLS estimation of a covariance matrix. For example, if the GLS estimation is made with
#' respect to a matrix of phylogenetic covariances, the eigenvalues express the distribution of
#' phylogenetic signal across components of the data space.
#'
#' The matrix product (K matrix) is the inverse of the OLS covariance matrix times
#' the GLS covariance matrix.
#' Redundancies between these matrices will mean the K matrix is likely not full rank. Therefore,
#' an algorithm is used to compute scores in appropriate dimensions. First, data are aligned to the
#' square-root matrix of the GLS
#' covariance matrix (Collyer and Adams, 2021), using the \code{\link{ordinate}} function. Second, relative eigen decomposition is
#' performed, and the number of real eigenvectors that can be computed are retained. Lastly, the same number of
#' aligned components are used for projection of data onto relative eigenvectors (the K components).
#'
#'
#' @param Y An n x p data matrix.
#' @param Cov An required n x n covariance matrix to describe
#' the non-independence among
#' observations in Y, and provide a GLS-centering of data.
#' @param transform. An optional argument to transform GLS-centered residuals,
#' if TRUE. If FALSE, only GLS-centering is performed.
#' @param scale. A logical value indicating whether the variables
#' should be scaled to have unit variance before the analysis
#' takes place. The default is FALSE.
#' @param tol A value indicating the magnitude below which
#' components should be omitted. (Components are omitted if their
#' standard deviations are less than or equal to tol times the
#' standard deviation of the first component.)
#' @param rank. Optionally, a number specifying the maximal rank,
#' i.e., maximal number of K components to be used.
#' This argument can be set as alternative or in addition to tol,
#' useful notably when the desired rank is considerably
#' smaller than the dimensions of the matrix of the K matrix.
#' @keywords analysis
#' @export
#' @author Michael Collyer
#' @return An object of class \code{kcomp} is a list containing
#' the following
#' \item{values}{The eigenvalues of the K matrix,}
#' \item{vectors}{The eigenvectors of the K matrix.}
#' \item{scores}{The projected scores of data onto the eigenvectors.}
#' @references Collyer, M.L. and D.C. Adams. 2021.
#' Phylogenetically-aligned Component Analysis. Methods
#' in Ecology and evolution. In press.
#' @references Bookstein, F. L., & Mitteroecker, P. (2014). Comparing
#' covariance matrices by relative eigenanalysis, with applications to
#' organismal biology. Evolutionary biology, 41, 336-350.
#' @references Mitteroecker, P., Collyer, M. L., & Adams, D. C. (2024).
#' Exploring Phylogenetic Signal in Multivariate Phenotypes by Maximizing
#' Blomberg’s K. Systematic Biology, syae035.
#'
#' @seealso \code{\link{plot.kcomp}}, \code{\link{ordinate}},
#' \code{\link{plot.default}}, \code{\link{rrpp.data.frame}}
#' @examples
#' data(PlethMorph)
#' PCA <- ordinate(as.data.frame(PlethMorph[c("TailLength",
#' "HeadLength", "Snout.eye", "BodyWidth","Forelimb", "Hindlimb")],
#' scale. = TRUE))
#' Y <- PCA$x
#' KCA <- kcomp(Y, Cov = PlethMorph$PhyCov, tol = 0.001)
#'
kcomp <- function(Y, Cov,
transform. = TRUE,
scale. = FALSE,
tol = NULL, rank. = NULL) {
if(is.null(rownames(Y)))
stop("Y must contain row names that are the same as in Cov.",
call. = FALSE)
Pcov <- Cov.proj(Cov, id = rownames(Y),
symmetric = TRUE)
Covsqrt <- fast.solve(Pcov)
PACA <- ordinate(Y, Cov = Covsqrt, transform. = transform.,
scale. = scale., tol = tol, rank. = rank.)
z <- PACA$x
SSCPo <- crossprod(z)
SSCPg <- crossprod(Pcov %*% z)
K <- fast.solve(SSCPg) %*% SSCPo
eig <- eigen(K)
colnames(eig$vectors) <- paste("KC", 1:NCOL(eig$vectors),
sep = "")
scores <- z %*% eig$vectors
out <- list(values = eig$values,
vectors = eig$vectors,
scores = scores)
class(out) <- "kcomp"
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.