Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
## -----------------------------------------------------------------------------
library(RRPP)
data("PupfishHeads")
PupfishHeads$logHeadSize <- log(PupfishHeads$headSize)
fit <- lm.rrpp(logHeadSize ~ sex + locality/year,
SS.type = "I", data = PupfishHeads,
print.progress = FALSE,
turbo = FALSE, verbose = TRUE)
summary(fit)
anova(fit, effect.type = "F")
## -----------------------------------------------------------------------------
anova(fit, effect.type = "F",
error = c("Residuals", "locality:year", "Residuals"))
## -----------------------------------------------------------------------------
fit.sex <- lm.rrpp(logHeadSize ~ sex,
data = PupfishHeads,
print.progress = FALSE)
fit.sex.loc<- lm.rrpp(logHeadSize ~ sex + locality,
data = PupfishHeads,
print.progress = FALSE)
fit.sex.loc.year<- lm.rrpp(logHeadSize ~ sex + locality/year,
data = PupfishHeads,
print.progress = FALSE)
anova(fit.sex, fit.sex.loc, fit.sex.loc.year, print.progress= FALSE)
## -----------------------------------------------------------------------------
coef(fit, test = TRUE)
## ----fig.height=3, fig.width=5------------------------------------------------
sizeDF <- data.frame(sex = c("Female", "Male"))
rownames(sizeDF) <- c("Female", "Male")
sizePreds <- predict(fit, sizeDF)
plot(sizePreds)
## ----fig.height=3, fig.width=5------------------------------------------------
plot(sizePreds, pch = 21, cex = 3, bg = c(2,4), lwd = 2)
## -----------------------------------------------------------------------------
fit2 <- lm.rrpp(logHeadSize ~ sex + locality/year,
SS.type = "II", data = PupfishHeads, print.progress = FALSE)
fit3 <- lm.rrpp(logHeadSize ~ sex + locality/year,
SS.type = "III", data = PupfishHeads, print.progress = FALSE)
anova(fit)
anova(fit2)
anova(fit3)
## -----------------------------------------------------------------------------
data(Pupfish)
Pupfish$logSize <- log(Pupfish$CS)
fit <- lm.rrpp(coords ~ logSize + Sex*Pop, SS.type = "I",
data = Pupfish, print.progress = FALSE,
turbo = FALSE, verbose = TRUE)
summary(fit, formula = FALSE)
anova(fit)
coef(fit, test = TRUE)
## ----error = TRUE-------------------------------------------------------------
fit$LM$data$coords <- Pupfish$coords
fit.par <- lm(fit$call$f1, data = fit$LM$data)
all.equal(fit$LM$coefficients, fit.par$coefficients)
summary(manova(fit.par))
## ----fig.height=5, fig.width=6------------------------------------------------
shapeDF <- expand.grid(Sex = levels(Pupfish$Sex), Pop = levels(Pupfish$Pop))
rownames(shapeDF) <- paste(shapeDF$Sex, shapeDF$Pop, sep = ".")
shapePreds <- predict(fit, shapeDF, confidence = 0.95)
plot(shapePreds, PC = TRUE, ellipse = TRUE) # generic
plot(shapePreds, PC = TRUE, ellipse = TRUE,
pch = 19, col = 1:NROW(shapeDF)) # with added par arguments
groups <- interaction(Pupfish$Sex, Pupfish$Pop)
plot(fit, type = "PC") # generic
plot(fit, type = "PC", pch = 19, col = groups) # with added par arguments
## ----fig.height=5, fig.width=6------------------------------------------------
plot(fit, type = "regression", reg.type = "PredLine",
predictor = Pupfish$logSize, pch=19,
col = as.numeric(groups))
## -----------------------------------------------------------------------------
PWT <- pairwise(fit, groups = interaction(Pupfish$Sex, Pupfish$Pop))
summary(PWT, confidence = 0.95)
## -----------------------------------------------------------------------------
fit2 <- lm.rrpp(coords ~ logSize * Sex * Pop, SS.type = "I",
data = Pupfish, print.progress = FALSE, iter = 999)
summary(fit2, formula = FALSE)
anova(fit, fit2, print.progress = FALSE)
PW2 <- pairwise(fit2, fit.null = fit, groups = groups,
covariate = Pupfish$logSize, print.progress = FALSE)
PW2
summary(PW2, confidence = 0.95,
test.type = "dist") # distances between slope vector lengths
summary(PW2, confidence = 0.95,
test.type = "dist", stat.table = FALSE)
summary(PW2, confidence = 0.95,
test.type = "VC",
angle.type = "deg") # correlation between slope vectors (and angles)
## -----------------------------------------------------------------------------
D <- dist(Pupfish$coords) # inter-observation Euclidean distances
Pupfish$D <- D
fitD <- lm.rrpp(D ~ logSize + Sex*Pop, SS.type = "I",
data = Pupfish, print.progress = FALSE)
summary(fitD)
summary(fit)
anova(fitD)
anova(fit)
## -----------------------------------------------------------------------------
data(PlethMorph)
fitOLS <- lm.rrpp(TailLength ~ SVL,
data = PlethMorph,
print.progress = FALSE,
turbo = FALSE, verbose = TRUE)
fitGLS <- lm.rrpp(TailLength ~ SVL,
data = PlethMorph,
Cov = PlethMorph$PhyCov,
print.progress = FALSE,
turbo = FALSE, verbose = TRUE)
anova(fitOLS)
anova(fitGLS)
coef(fitOLS, test = TRUE)
coef(fitGLS, test = TRUE)
## ----fig.height=4, fig.width=8------------------------------------------------
Y <- as.matrix(cbind(PlethMorph$TailLength,
PlethMorph$HeadLength,
PlethMorph$TailLength,
PlethMorph$Snout.eye,
PlethMorph$BodyWidth,
PlethMorph$Forelimb,
PlethMorph$Hindlimb))
PlethMorph$Y <- Y
fitOLSm <- lm.rrpp(Y ~ SVL, data = PlethMorph,
print.progress = FALSE,
turbo = FALSE, verbose = TRUE)
fitGLSm <- lm.rrpp(Y ~ SVL, data = PlethMorph,
Cov = PlethMorph$PhyCov,
print.progress = FALSE,
turbo = FALSE, verbose = TRUE)
anova(fitOLSm)
anova(fitGLSm)
sizeDF <- data.frame(SVL = sort(PlethMorph$SVL))
plot(predict(fitOLSm, sizeDF), PC= TRUE) # Correlated error
plot(predict(fitGLSm, sizeDF), PC= TRUE) # Independent error
## -----------------------------------------------------------------------------
attributes(fit)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.