Nothing
#' Compute centers of the interval
#' @name centers.interval
#' @author Jorge Arce.
#' @aliases centers.interval
#' @description Compute centers of the interval
#' @usage centers.interval(sym.data)
#' @param sym.data Symbolic interval data table.
#'
#' @return Centers of teh intervals.
#' @references Arce J. and Rodriguez O. (2015) 'Principal Curves and Surfaces to Interval Valued Variables'.
#' The 5th Workshop on Symbolic Data Analysis, SDA2015, Orleans, France, November.
#'
#' Hastie,T. (1984).Principal Curves and Surface. Ph.D Thesis Stanford University.
#'
#' Hastie,T. & Weingessel,A. (2014).
#' princurve - Fits a Principal Curve in Arbitrary Dimension.R package version 1.1--12
#' http://cran.r-project.org/web/packages/princurve/index.html.
#'
#' Hastie,T. & Stuetzle, W. (1989). Principal Curves.
#' Journal of the American Statistical Association, Vol. 84-406, 502--516.
#'
#' Hastie, T., Tibshirani, R. & Friedman, J. (2008).
#' The Elements of Statistical Learning; Data Mining, Inference and Prediction. Springer, New York.
#'
#' @seealso sym.interval.pc
#' @keywords Principal Curve
#' @import princurve
centers.interval <- function(sym.data) {
idn <- all(sym.data$sym.var.types == sym.data$sym.var.types[1])
if (idn == FALSE) {
stop("All variables have to be of the same type")
}
if ((sym.data$sym.var.types[1] != "$I")) {
stop("Variables have to be continuos or Interval")
} else {
nn <- sym.data$N
}
mm <- sym.data$M
centers <- matrix(0, nn, mm)
centers <- as.data.frame(centers)
rownames(centers) <- sym.data$sym.obj.names
colnames(centers) <- sym.data$sym.var.names
for (i in 1:nn) {
for (j in 1:mm) {
centers[i, j] <- (sym.var(sym.data, j)$var.data.vector[
i,
1
] + sym.var(sym.data, j)$var.data.vector[i, 2]) / 2
}
}
return(centers)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.