Nothing
#############################################################################
#
# This file is part of the R package "RSNNS".
#
# Author: Christoph Bergmeir
# Supervisor: José M. Benítez
# Copyright (c) DiCITS Lab, Sci2s group, DECSAI, University of Granada.
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Library General Public License for more details.
#
# You should have received a copy of the GNU Library General Public License
# along with this library; see the file COPYING.LIB. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
# Boston, MA 02110-1301, USA.
#
#############################################################################
#' ART2 is very similar to ART1, but for real-valued input. See \code{\link{art1}}
#' for more information. Opposed to the ART1 implementation, the ART2 implementation
#' does not assume two-dimensional input.
#'
#' As comparison of real-valued vectors is more difficult than comparison of binary vectors,
#' the comparison layer is more complex in ART2, and actually consists of three layers. With a more
#' complex comparison layer, also other parts of the network enhance their complexity.
#' In SNNS, this enhanced complexity is reflected by the presence of more parameters in initialization-, learning-,
#' and update function.
#'
#' In analogy to the implementation of ART1, there are one initialization function, one learning function and two
#' update functions suitable for ART2. The learning and update functions have five parameters, the initialization function has two
#' parameters. For details see the SNNS User Manual, p. 67 and pp. 192.
#'
#'
#' @title Create and train an art2 network
#' @references
#' Carpenter, G. A. & Grossberg, S. (1987), 'ART 2: self-organization of stable category recognition codes for analog input patterns', Appl. Opt. 26(23), 4919--4930.
#'
#' Grossberg, S. (1988), Adaptive pattern classification and universal recoding. I.: parallel development and coding of neural feature detectors, MIT Press, Cambridge, MA, USA, chapter I, pp. 243--258.
#'
#' Herrmann, K.-U. (1992), 'ART -- Adaptive Resonance Theory -- Architekturen, Implementierung und Anwendung', Master's thesis, IPVR, University of Stuttgart. (in German)
#'
#' Zell, A. et al. (1998), 'SNNS Stuttgart Neural Network Simulator User Manual, Version 4.2', IPVR, University of Stuttgart and WSI, University of Tübingen.
#' \url{https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html}
#'
#' Zell, A. (1994), Simulation Neuronaler Netze, Addison-Wesley. (in German)
#' @export
art2 <- function(x, ...) UseMethod("art2")
#' @param x a matrix with training inputs for the network
#' @param f2Units controls the number of clusters assumed to be present
#' @param maxit maximum of iterations to learn
#' @param initFunc the initialization function to use
#' @param initFuncParams the parameters for the initialization function
#' @param learnFunc the learning function to use
#' @param learnFuncParams the parameters for the learning function
#' @param updateFunc the update function to use
#' @param updateFuncParams the parameters for the update function
#' @param shufflePatterns should the patterns be shuffled?
#' @param ... additional function parameters (currently not used)
#' @return an \code{\link{rsnns}} object. The \code{fitted.values} member contains the
#' activation patterns for all inputs.
#' @export
# @S3method art2 default
#' @method art2 default
#' @seealso \code{\link{art1}}, \code{\link{artmap}}
#' @rdname art2
#' @examples
#' \dontrun{demo(art2_tetra)}
#' \dontrun{demo(art2_tetraSnnsR)}
#'
#'
#' data(snnsData)
#' patterns <- snnsData$art2_tetra_med.pat
#'
#' model <- art2(patterns, f2Units=5, learnFuncParams=c(0.99, 20, 20, 0.1, 0),
#' updateFuncParams=c(0.99, 20, 20, 0.1, 0))
#' model
#'
#' testPatterns <- snnsData$art2_tetra_high.pat
#' predictions <- predict(model, testPatterns)
#'
#' \dontrun{library(scatterplot3d)}
#'
#' \dontrun{par(mfrow=c(2,2))}
#' \dontrun{scatterplot3d(patterns, pch=encodeClassLabels(model$fitted.values))}
#' \dontrun{scatterplot3d(testPatterns, pch=encodeClassLabels(predictions))}
art2.default <- function(x, f2Units=5, maxit=100,
initFunc="ART2_Weights", initFuncParams=c(0.9, 2.0),
learnFunc="ART2", learnFuncParams=c(0.98, 10.0, 10.0, 0.1, 0.0),
updateFunc="ART2_Stable", updateFuncParams=c(0.98, 10.0, 10.0, 0.1, 0.0),
shufflePatterns=TRUE, ...) {
x <- as.matrix(x)
nInputs <- dim(x)[2L]
snns <- rsnnsObjectFactory(subclass=c("art2"), nInputs=nInputs, maxit=maxit,
initFunc=initFunc, initFuncParams=initFuncParams,
learnFunc=learnFunc, learnFuncParams=learnFuncParams,
updateFunc=updateFunc,
updateFuncParams=updateFuncParams,
shufflePatterns=shufflePatterns, computeIterativeError=FALSE)
snns$archParams <- list(f2Units=f2Units)
#snns$snnsObject$setUnitDefaults(1,0,1,0,1,'Act_Logistic','Out_Identity')
snns$snnsObject$art2_createNet(nInputs,nInputs,f2Units,f2Units)
snns <- train(snns, inputsTrain=x)
snns
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.