Nothing
# mlp_1dim_eval.R
# This trivial model demonstrates that even a
# a two class problem in one dimensional space
# may require a few hidden nodes to model the
# data. Another advantage of this model, is
# the arithmetic of following the operation
# of the feedforward network can be done with a calculator,
# once you have the weights and thresholds.
#
# Though the data is one dimensional,
# we plot it in two dimensional space (where
# y is random noise) for appearance sake only.
# do not change these variables.
Dim <- 1 # Dimension of parameter space
nclasses <- 2 # Number of classes
# You can change these variables
training.size <- 500 # Number of training samples
test.size <- 5000 # Number of test samples
hidden <- 5 # We need no less than 5 hidden nodes.
#learningfunc <- 'Rprop'
learningfunc <- 'SCG'
#learningfunc <- 'Std_Backpropagation'
iterations <- 2000
learnfunc.selection <- c(
'Std_Backpropagation',
'BackpropBatch',
'BackpropChunk',
'BackpropMomentum',
'BackpropWeightDecay',
'Rprop',
'QuickProp',
'SCG'
)
set.seed(123456)
data.size <- training.size + test.size
x <- runif(data.size,0,1)
y <- runif(data.size,0,1)
data.samples <- matrix(x, nrow =1)
dataset_2_k <- function (k) {
data.class <- c()
for (i in 1:data.size) {
s <- data.samples[i]
n <- floor(s*k)
if ((n %% 2) == 1) {
classid <- 2
} else {
classid <- 1
}
data.class <- c(data.class,classid)
}
return (data.class)
}
dataset_2_bin <- function (n) {
data.class <- c()
n <- n %% 256 # restrict to 8 bits
mapper <- as.integer(intToBits(n))
mapper <- rev(mapper[1:8])
print(mapper)
for (i in 1:data.size) {
s <- data.samples[i]
m <- floor(s*8) + 1
classid <- mapper[m] + 1
data.class <- c(data.class,classid)
}
return(data.class)
}
dataset_5_1 <- function () {
data.class <- c()
for (i in 1:data.size) {
s <- data.samples[i]
n <- floor(s*5)
classid <- (n + 1)
data.class <- c(data.class,classid)
}
nclasses <<- 5
return (data.class)
}
#data.class <- dataset_5_1()
#data.class <- dataset_2_k(2)
data.class <- dataset_2_bin(69)
par(mfrow=c(2,2))
#pdf('1dtrain.pdf')
plot(x[1:training.size],y[1:training.size],col=data.class,xlab='x',
ylab='y')
#dev.off()
class_matrix_to_vector <- function (modeled_output) {
size <- nrow(modeled_output)
classvalues <- c(rep(0, size))
for (i in 1:size) {
class <- which.max(modeled_output[i, ])
classvalues[i] <- class
}
return(classvalues)
}
classcol <- function (col, dim) {
# converts a category to a column vector of dimension dim
m <- matrix(0, dim, 1)
m[col, 1] <- 1
m
}
# Neural Network
# --------------
# Create formula for neural net algorithm
xdict <- c('x1', 'x2', 'x3', 'x4', 'x5', 'x6')
cdict <-
c('c1',
'c2',
'c3',
'c4',
'c5',
'c6',
'c7',
'c8',
'c9',
'c10',
'c11',
'c12')
test.ptr <- training.size + 1
training.data <- data.samples[1:training.size]
test.data <- data.samples[test.ptr:data.size]
training.class <- data.class[1:training.size]
test.class <- data.class[test.ptr:data.size]
# convert each training.class to a column vector of length nclasses
# where all entries are zero except for the one at column
# training.class. Join all the column vectors (for each sample)
# into a matrix of size training.size by nclasses.
class_matrix <- sapply(training.class, classcol, nclasses)
# Assign variables c1,c2, and etc. to the nrows of the class_matrix.
# c1[i] = 1 if sample i is assigned to class 1 otherwise 0.
# c2[i] = 1 if sample i is assigned to class 2 otherwise 0.
# and etc.
for (i in c(1:nclasses)) {
assign(cdict[i], class_matrix[i, ])
}
library(Rcpp)
library(RSNNS)
cat("\n\ntraining size = ", training.size, " samples\n")
cat("number of classes = ", nclasses, "\n")
cat("dimension of space = ", Dim, "\n")
cat("hidden layer(s) = ",hidden,'\n')
cat("learning function = ",learningfunc,'\n')
apply_nn_to_training_data <- function () {
training.data <- as.matrix(training.data)
modeled_output <- predict(nn, training.data)
classvalues <- class_matrix_to_vector (modeled_output)
confusion <- table(training.class, classvalues)
training.accuracy <- sum(diag(confusion)) / training.size
cat("training data\n confusion matrix")
print(confusion)
cat("training accuracy = ", training.accuracy,"\n")
}
apply_nn_to_test_data <- function () {
# Assign x1,x2... to the columns of the samples matrix
# and append it to the training.data data.frame()
test.data <- as.matrix(test.data)
modeled_output <- predict(nn, test.data)
classvalues <- class_matrix_to_vector (modeled_output)
confusion <- table(test.class, classvalues)
cat("\n\ntest data\n confusion matrix")
print(confusion)
test.accuracy <- sum(diag(confusion)) / test.size
cat("\n test accuracy = ", test.accuracy,"\n")
# pdf('1dtest.pdf')
plot(x[test.ptr:data.size],y[test.ptr:data.size],col=classvalues,
xlab='x',ylab='y')
# dev.off()
}
graph_iteration_error <- function () {
#pdf('convergence_5-5.pdf')
plotIterativeError(nn,log='xy')
grid()
#dev.off()
}
plot_neural_net <- function (net) {
#pdf('net.pdf')
library(NeuralNetTools)
plotnet(net)
#dev.off()
}
error_scg <- c()
for (k in 1:1)
{
nn <- mlp(
training.data,
t(class_matrix),
size = hidden,
# linOut = TRUE,
learnFunc = learningfunc,
learnFuncParams = c(0.05, 0.0),
maxit = iterations
)
cat(k,' ',
"Fit error reduced from ",
nn$IterativeFitError[1],
" to ",
nn$IterativeFitError[length(nn$IterativeFitError)],
" in ",
length(nn$IterativeFitError),
" iterations \n"
)
graph_iteration_error()
apply_nn_to_training_data()
apply_nn_to_test_data()
plot_neural_net (nn)
cat("\n Network Description \n\n")
print(extractNetInfo(nn))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.