Description Details Author(s) References See Also Examples
The R package RSPS uses an efficient simulation algorithm to empirically determine statistical power and necessary sample size for RNA-Seq studies. The data are simulated from Poisson (no overdispersion) or Negative Binomial distribution (overdispersion). The package allows one to monitor the progress of the function when the power is being computed. There are two functions for providing plots of the estimated power for given sample size and estimated sample size to achieve desired power.
Package: | RSPS |
Type: | Package |
Version: | 1.0 |
Date: | 2015-05-19 |
License: | GPL-2 |
Milan Bimali Maintainer: Milan Bimali <mbimali@kumc.edu>
If necessary, users are referred to power and sample sizes computation found in introductory statistics textbooks.
rpoiss, rnbinom
1 2 3 4 5 6 7 8 9 | power.poiss <- poiss.pow(n=c(5,10,15),lambda1=c(3),k=c(2,2.5,3),
alpha=0.05,seed = 20,numsim=100,monitor=TRUE)
power.poiss
power.plot(power.poiss,cutoff=c(0.8,0.9))
# Another example (takes longer to run)
#power.poiss <- poiss.pow(n=c(3,5,10,15),lambda1=c(3),k=c(2,2.5,3),
#alpha=0.001,seed = 20,numsim=500,monitor=TRUE)
#power.poiss
#power.plot(power.poiss,cutoff=c(0.8,0.9))
|
|
| | 0%
|
|======== | 11%
|
|================ | 22%
|
|======================= | 33%
|
|=============================== | 44%
|
|======================================= | 56%
|
|=============================================== | 67%
|
|====================================================== | 78%
|
|============================================================== | 89%
|
|======================================================================| 100%
N Mean.Null Effect.Size Type.I.Error Power Std.Err
1 5 3 2.0 0.05 0.66 0.047
2 10 3 2.0 0.05 0.94 0.024
3 15 3 2.0 0.05 0.99 0.010
4 5 3 2.5 0.05 0.93 0.026
5 10 3 2.5 0.05 0.99 0.010
6 15 3 2.5 0.05 1.00 0.000
7 5 3 3.0 0.05 0.98 0.014
8 10 3 3.0 0.05 1.00 0.000
9 15 3 3.0 0.05 1.00 0.000
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.