Description Usage Arguments Details Value Note Author(s) References See Also Examples
The function provides estimate of power for given sample size when there is over-dispersion. The data is simulated from Negative Binomial distribution.
1 | negbin.pow(n, lambda1, k, disp, alpha, seed, numsim, monitor, sig)
|
n |
A vector of positive integers representing the sample size |
lambda1 |
Mean count under the null distribution. It can be a vector. |
k |
Fold change desired under the alternative distribution. It can be a vector. |
disp |
The over-dispersion parameter. 1 represent no pver-dispersion and values above one represent over-dispersion. |
alpha |
Type I error rate: a value between 0 and 1. It can be a vector. |
seed |
Value of seed to ensure reproducibility of results. |
numsim |
Number of simulations. 1000 is recommended. |
monitor |
If TRUE, it allows us to view the progress of the function. |
sig |
Number of significant digits after decimal. |
The test statistic used is the scaled difference. Please contact the authors for more details on algorithm.
Mean.Null |
Mean Count under Null distribution. |
Effect.Size |
Fold Change Under the alternate hypothesis. |
Disp.Par |
Over-dispersion parameter. |
Power |
Estimated Power. |
Std.Err |
Standard Error. |
The alternative ecological parameterization is used for Negative binomial distribution.
Milan Bimali
None
rnbinom
1 2 3 4 5 6 7 8 9 | power.negbin <- negbin.pow(n=c(5,10),lambda1=c(3,5),
k=c(2,3),disp=2,alpha=0.001,seed = 20,
numsim=100,monitor=TRUE)
power.plot(power.negbin)
# Another example (takes longer to run)
#power.negbin <- negbin.pow(n=c(3,5,10,15),lambda1=c(3,5),
#k=c(2,2.5,3),disp=2,alpha=0.001,seed = 20,
#numsim=1000,monitor=TRUE)
#head(power.negbin)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.