Nothing
The main purpose of this package is to perform simulation-based estimation of stochastic actor-oriented models for longitudinal network data collected as panel data. Dependent variables can be single or multivariate networks, which can be directed, non-directed, or two-mode; and associated actor variables. There are also functions for testing parameters and checking goodness of fit. An overview of these models is given in Snijders (2017), <doi:10.1146/annurev-statistics-060116-054035>.
Package details |
|
---|---|
Author | Tom A.B. Snijders [cre, aut] (<https://orcid.org/0000-0003-3157-4157>), Ruth M. Ripley [aut], Krists Boitmanis [aut, ctb], Christian Steglich [aut, ctb] (<https://orcid.org/0000-0002-9097-0873>), Johan Koskinen [ctb] (<https://orcid.org/0000-0002-6860-325X>), Nynke M.D. Niezink [aut, ctb] (<https://orcid.org/0000-0003-4199-4841>), Viviana Amati [aut, ctb] (<https://orcid.org/0000-0003-1190-1237>), Christoph Stadtfeld [ctb] (<https://orcid.org/0000-0002-2704-2134>), James Hollway [ctb] (IHEID, <https://orcid.org/0000-0002-8361-9647>), Per Block [ctb] (<https://orcid.org/0000-0002-7583-2392>), Robert Krause [ctb] (<https://orcid.org/0000-0003-4288-4732>), Charlotte Greenan [ctb], Josh Lospinoso [ctb], Michael Schweinberger [ctb] (<https://orcid.org/0000-0003-3649-5386>), Mark Huisman [ctb] (<https://orcid.org/0000-0002-9009-7859>), Felix Schoenenberger [aut, ctb], Mark Ortmann [ctb], Marion Hoffman [ctb] (<https://orcid.org/0000-0002-0741-7760>), Robert Hellpap [ctb], Alvaro Uzaheta [ctb] (<https://orcid.org/0000-0003-4367-3670>), Steffen Triebel [ctb] |
Maintainer | Tom A.B. Snijders <tom.snijders@nuffield.ox.ac.uk> |
License | GPL-2 | GPL-3 | file LICENSE |
Version | 1.4.7 |
URL | https://www.stats.ox.ac.uk/~snijders/siena/ |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.