Description Usage Arguments Value Examples
View source: R/prevalence_functions.R
Calculates Jeffreys confidence limits for a simple proportion (apparent prevalence)
1 | binom.jeffreys(x, n, conf = 0.95)
|
x |
number of positives in sample |
n |
sample size, note: either x or n can be a vector, but at least one must be scalar |
conf |
level of confidence required, default = 0.95 (scalar) |
a dataframe with 6 columns, x, n, proportion, lower confidence limit, upper confidence limit, confidence level and CI method
1 2 3 4 | # test binom.jeffreys
binom.jeffreys(25, 200)
binom.jeffreys(seq(10, 100, 10), 200)
binom.jeffreys(50, seq(100, 1000, 100))
|
x n proportion lower upper conf.level method
1 25 200 0.125 0.08462743 0.176126 0.95 jeffreys
x n proportion lower upper conf.level method
1 10 200 0.05 0.02599340 0.08687509 0.95 jeffreys
2 20 200 0.10 0.06416642 0.14729862 0.95 jeffreys
3 30 200 0.15 0.10567714 0.20436243 0.95 jeffreys
4 40 200 0.20 0.14910087 0.25950769 0.95 jeffreys
5 50 200 0.25 0.19387268 0.31330266 0.95 jeffreys
6 60 200 0.30 0.23970343 0.36603761 0.95 jeffreys
7 70 200 0.35 0.28642624 0.41787992 0.95 jeffreys
8 80 200 0.40 0.33393964 0.46893129 0.95 jeffreys
9 90 200 0.45 0.38218245 0.51925306 0.95 jeffreys
10 100 200 0.50 0.43112169 0.56887831 0.95 jeffreys
x n proportion lower upper conf.level method
1 50 100 0.50000000 0.40317395 0.59682605 0.95 jeffreys
2 50 200 0.25000000 0.19387268 0.31330266 0.95 jeffreys
3 50 300 0.16666667 0.12778866 0.21193873 0.95 jeffreys
4 50 400 0.12500000 0.09532127 0.16008042 0.95 jeffreys
5 50 500 0.10000000 0.07601365 0.12859922 0.95 jeffreys
6 50 600 0.08333333 0.06321161 0.10746127 0.95 jeffreys
7 50 700 0.07142857 0.05410074 0.09228966 0.95 jeffreys
8 50 800 0.06250000 0.04728563 0.08087121 0.95 jeffreys
9 50 900 0.05555556 0.04199557 0.07196675 0.95 jeffreys
10 50 1000 0.05000000 0.03777013 0.06482846 0.95 jeffreys
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.