Description Usage Arguments Value Examples
View source: R/risk_based_functions.R
Calculates population sensitivity for a single risk factor and varying unit sensitivity using binomial method (assumes large population)
1 | sep.rb.bin.varse(pstar, rr, ppr, df)
|
pstar |
design prevalence (scalar) |
rr |
relative risk values (vector of values corresponding to the number of risk strata) |
ppr |
population proportions corresponding to rr values (vector of equal length to rr) |
df |
dataframe of values for each combination of risk stratum and sensitivity level, col 1 = risk group index, col 2 = unit Se, col 3 = n (sample size for that risk group and unit sensitivity) |
list of 3 elements, a scalar of population-level sensitivity a vector of EPI values and a vector of corresponding adjusted risks
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | # examples for sep.rb.bin.varse
rg<- c(1, 1, 2, 2)
se<- c(0.92, 0.85, 0.92, 0.85)
n<- c(80, 30, 20, 30)
df<- data.frame(rg, se, n)
sep.rb.bin.varse(0.01, c(5, 1), c(0.1, 0.9), df)
rg<- c(1, 1, 2, 2)
se<- c(0.95, 0.8, 0.95, 0.8)
n<- c(20, 10, 10, 5)
df<- data.frame(rg, se, n)
sep.rb.bin.varse(0.05, c(3, 1), c(0.2, 0.8), df)
rg<- c(rep(1, 30), rep(2, 15))
se<- c(rep(0.95, 20), rep(0.8, 10), rep(0.95, 10), rep(0.8, 5))
n<- rep(1, 45)
df<- data.frame(rg, se, n)
sep.rb.bin.varse(0.02, c(3, 1), c(0.2, 0.8), df)
rg<- c(1, 2, 3, 1, 2, 3)
se<- c(0.95, 0.95, 0.95, 0.8, 0.8, 0.8)
n<- c(20, 10, 10, 30, 5, 5)
df<- data.frame(rg, se, n)
sep.rb.bin.varse(0.01, c(5, 3, 1), c(0.1, 0.3, 0.6), df)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.