Description Usage Arguments Value Note Examples
View source: R/freedom_functions_1.R
Calculates population-level (system) sensitivity for representative 2-stage sampling (sampling of clusters and units within clusters), assuming imperfect test sensitivity and perfect test specificity
1 |
H |
population size = number of clusters in the population, default = NA |
N |
population size within clusters, scalar or a vector of same length as n, default = NA |
n |
sample size (vector of number tested per cluster) |
pstar.c |
cluster (herd) level design prevalence, scalar, either proportion or integer |
pstar.u |
unit (animal) level design prevalence, scalar, either proportion or integer |
se |
unit sensitivity of test (proportion), scalar, default = 1 |
list of 6 elements, 1) population level sensitivity, 2) vector of cluster-level sensitivities, 3) N, 4) n, 5) vector of design prevalences and 6) unit sensitivity
if pstar.c is not a proportion N must be provided (and N>=n)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | # examples for sep.sys - checked
H<- 500
N<- rep(1000, 150)
N[5]<- NA
n<- rep(30, 150)
pstar.u<- 0.1
pstar.c<- 0.01
se<- 0.98
sep.sys(H, N, n, pstar.c, pstar.u, se)
sep.sys(NA, N, n, 0.02, 0.05, 0.95)
N<- round(runif(105)*900+100)
n<- round(runif(105)*30+10)
sse<- sep.sys(1000, N, n, 0.02, 0.05, 0.9)
data.frame(N, n, sse[[2]])
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.