Description Usage Arguments Details Value Author(s) Examples
Creates a trained model using the specified algorithm.
1 2 3 4 5 6 7 8 | train_model(container, algorithm=c("SVM","SLDA","BOOSTING","BAGGING",
"RF","GLMNET","TREE","NNET"), method = "C-classification",
cross = 0, cost = 100, kernel = "radial", maxitboost = 100,
maxitglm = 10^5, size = 1, maxitnnet = 1000, MaxNWts = 10000,
rang = 0.1, decay = 5e-04, trace=FALSE, ntree = 200,
l1_regularizer = 0, l2_regularizer = 0, use_sgd = FALSE,
set_heldout = 0, verbose = FALSE,
...)
|
container |
Class of type |
algorithm |
Character vector (i.e. a string) specifying which algorithm to use. Use |
method |
Method parameter for SVM implentation. See e1071 documentation for more details. |
cross |
Cross parameter for SVM implentation. See e1071 documentation for more details. |
cost |
Cost parameter for SVM implentation. See e1071 documentation for more details. |
kernel |
Kernel parameter for SVM implentation. See e1071 documentation for more details. |
maxitboost |
Maximum iterations parameter for boosting implentation. See caTools documentation for more details. |
maxitglm |
Maximum iterations parameter for glmnet implentation. See glmnet documentation for more details. |
size |
Size parameter for neural networks implentation. See nnet documentation for more details. |
maxitnnet |
Maximum iterations for neural networks implentation. See nnet documentation for more details. |
MaxNWts |
Maximum number of weights parameter for neural networks implentation. See nnet documentation for more details. |
rang |
Range parameter for neural networks implentation. See nnet documentation for more details. |
decay |
Decay parameter for neural networks implentation. See nnet documentation for more details. |
trace |
Trace parameter for neural networks implentation. See nnet documentation for more details. |
ntree |
Number of trees parameter for RandomForests implentation. See randomForest documentation for more details. |
l1_regularizer |
An |
l2_regularizer |
An |
use_sgd |
A |
set_heldout |
An |
verbose |
A |
... |
Additional arguments to be passed on to algorithm function calls. |
Only one algorithm may be selected for training. See train_models
and classify_models
to train and classify using multiple algorithms.
Returns a trained model that can be subsequently used in classify_model
to classify new data.
Timothy P. Jurka, Loren Collingwood
1 2 3 4 5 6 7 8 9 | library(RTextTools)
data(NYTimes)
data <- NYTimes[sample(1:3100,size=100,replace=FALSE),]
matrix <- create_matrix(cbind(data["Title"],data["Subject"]), language="english",
removeNumbers=TRUE, stemWords=FALSE, weighting=tm::weightTfIdf)
container <- create_container(matrix,data$Topic.Code,trainSize=1:75, testSize=76:100,
virgin=FALSE)
rf_model <- train_model(container,"RF")
svm_model <- train_model(container,"SVM")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.