Nothing
train_model <- function(container,algorithm=c("SVM","SLDA","BOOSTING","BAGGING","RF","GLMNET","TREE","NNET"),
method="C-classification", cross=0, cost=100, kernel="radial", # SVM PARAMETERS
maxitboost=100, # BOOSTING PARAMETERS
maxitglm=10^5, # GLMNET PARAMETERS
size=1,maxitnnet=1000,MaxNWts=10000,rang=0.1,decay=5e-4,trace=FALSE, # NNET PARAMETERS
ntree=200, # RF PARAMETERS
l1_regularizer=0.0,l2_regularizer=0.0,use_sgd=FALSE,set_heldout=0,verbose=FALSE, # MAXENT PARAMETERS
...) {
# CLEAN UP FROM PREVIOUS MODEL TRAINED
gc()
# CONDITIONAL TRAINING OF MODEL
if (algorithm=="SVM") {
model <- svm(x=container@training_matrix, y=container@training_codes, method=method, cross=cross, cost=cost, probability=TRUE, kernel=kernel)
} else if (algorithm=="SLDA") {
model <- slda(container.training_codes ~ ., data=data.frame(as.matrix(container@training_matrix),container@training_codes))
} else if (algorithm=="BOOSTING") {
model <- LogitBoost(xlearn=as.matrix(container@training_matrix), ylearn=container@training_codes, nIter=maxitboost)
} else if (algorithm=="BAGGING") {
model <- bagging(container.training_codes ~ ., data=data.frame(as.matrix(container@training_matrix),container@training_codes))
} else if (algorithm=="RF") {
model <- randomForest(x=as.matrix(container@training_matrix), y=container@training_codes, ntree=ntree)
} else if (algorithm=="GLMNET") {
training_matrix <- as(container@training_matrix,"sparseMatrix")
model <- glmnet(x=training_matrix, y=container@training_codes, family="multinomial", maxit=maxitglm)
} else if (algorithm=="TREE") {
model <- tree(container.training_codes ~ ., data=data.frame(as.matrix(container@training_matrix),container@training_codes))
} else if (algorithm=="NNET") {
model <- nnet(container.training_codes ~ ., data=data.frame(as.matrix(container@training_matrix),container@training_codes), size=size, maxit=maxitnnet, MaxNWts=MaxNWts, rang=rang, decay=decay, trace=trace)
} else {
stop("ERROR: Invalid algorithm specified. Type print_algorithms() for a list of available algorithms.")
}
# RETURN TRAINED MODEL
gc() # CLEAN UP AFTER MODEL
return(model)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.