Nothing
classify_model <-
function(container, model, s=0.01, ...) {
gc()
extract_maximum_prob <- function(x) return(x[which.max(x)])
extract_label_from_prob <- function(x) return(which.max(x))
extract_label_from_prob_names <- function(x) return(rownames(as.matrix(which.max(x))))
if (pmatch("svm",class(model),nomatch=0) > 0){
svm_results <- predict(model,container@classification_matrix, prob=TRUE, ...) #Extract Label
svm_pred <- svm_results[1:length(svm_results)]
svm_prob <- apply(attr(svm_results,"prob"),1,extract_maximum_prob)
results_table <- data.frame(as.character(svm_pred),svm_prob) #need to chang svm_pred to numeric for agreescore creation
colnames(results_table)[1] <- "SVM_LABEL"
colnames(results_table)[2] <- "SVM_PROB"
} else
if (pmatch("slda",class(model),nomatch=0) > 0){
slda_results <- predict(model,data.frame(as.matrix(container@classification_matrix)),...)
slda_pred <- apply(slda_results$posterior,1,extract_label_from_prob_names) #Extract Label Based on Probability
slda_prob <- apply(slda_results$posterior,1,extract_maximum_prob) #Extract Highest Probability
results_table <- data.frame(as.character(slda_pred),slda_prob)
colnames(results_table)[1] <- "SLDA_LABEL"
colnames(results_table)[2] <- "SLDA_PROB"
} else
if (pmatch("LogitBoost",class(model),nomatch=0) > 0) {
lboost_results <- predict(model,xtest=as.matrix(container@classification_matrix),type="raw",...) #Probability
lboost_pred <- apply(lboost_results,1,extract_label_from_prob_names) #Extract Label Based on Probability
lboost_prob <- apply(lboost_results,1,extract_maximum_prob) #Extract Highest Probability
results_table <- data.frame(as.character(lboost_pred),lboost_prob)
colnames(results_table)[1] <- "LOGITBOOST_LABEL"
colnames(results_table)[2] <- "LOGITBOOST_PROB"
} else
if (pmatch("classbagg",class(model),nomatch=0) > 0) {
bagging_results <- predict(model,newdata=data.frame(as.matrix(container@classification_matrix)), type=c("prob"),...)
bagging_pred <- apply(bagging_results,1,extract_label_from_prob_names) #Extract Label Based on Probability
bagging_prob <- apply(bagging_results,1,extract_maximum_prob)
results_table <- data.frame(as.character(bagging_pred),bagging_prob)
colnames(results_table)[1] <- "BAGGING_LABEL"
colnames(results_table)[2] <- "BAGGING_PROB"
} else
if (pmatch("randomForest",class(model),nomatch=0) > 0){
rf_results <- predict(model,newdata=as.matrix(container@classification_matrix),type="prob",...)
rf_pred <- apply(rf_results,1,extract_label_from_prob_names)
rf_prob <- apply(rf_results,1,extract_maximum_prob)
results_table <- data.frame(as.character(rf_pred),rf_prob)
colnames(results_table)[1] <- "FORESTS_LABEL"
colnames(results_table)[2] <- "FORESTS_PROB"
} else
if (pmatch("glmnet",class(model),nomatch=0) > 0){
classification_matrix <- as(as.matrix.csc(container@classification_matrix),"dgCMatrix")
#colnames(classification_matrix) <- container@column_names
glmnet_results <- predict(model,newx=classification_matrix,s=s,type="response",...)
glmnet_pred <- apply(glmnet_results[,,1],1,extract_label_from_prob_names)
glmnet_prob <- apply(glmnet_results,1,extract_maximum_prob)
results_table <- data.frame(as.character(glmnet_pred),glmnet_prob)
colnames(results_table)[1] <- "GLMNET_LABEL"
colnames(results_table)[2] <- "GLMNET_PROB"
} else
if (pmatch("tree",class(model),nomatch=0) > 0){
tree_results <- predict(model,newdata=data.frame(as.matrix(container@classification_matrix)), type="vector",...)
tree_pred <- apply(tree_results,1,extract_label_from_prob_names)
tree_prob <- apply(tree_results,1,extract_maximum_prob)
results_table <- data.frame(as.character(tree_pred),tree_prob)
colnames(results_table)[1] <- "TREE_LABEL"
colnames(results_table)[2] <- "TREE_PROB"
} else
if (pmatch("nnet",class(model),nomatch=0) > 0){
nnet_results <- predict(model,newdata=data.frame(as.matrix(container@classification_matrix)),...) #probabilities
nnet_pred <- apply(nnet_results,1,extract_label_from_prob_names) #Extract Highest Probability Score
nnet_prob <- apply(nnet_results,1,extract_maximum_prob) #Extract Probability
results_table <- data.frame(as.character(nnet_pred),nnet_prob)
colnames(results_table)[1] <- "NNETWORK_LABEL"
colnames(results_table)[2] <- "NNETWORK_PROB"
}
return(results_table)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.