Nothing
#' Generate Multiple Random Hypergeometric Walks in Multiple Dimensions
#'
#' @family Generator Functions
#' @family Discrete Distribution
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @description
#' The `random_hypergeometric_walk` function generates multiple random walks using the hypergeometric distribution via `rhyper()`.
#' The user can specify the number of walks, the number of steps in each walk, and the urn parameters (m, n, k).
#' The function also allows for sampling a proportion of the steps and optionally sampling with replacement.
#'
#' @details
#' This function generates random walks where each step is drawn from the hypergeometric distribution using `rhyper()`.
#' The user can control the number of walks, steps per walk, and the urn parameters: m (white balls), n (black balls), and k (balls drawn).
#' The function supports 1, 2, or 3 dimensions, and augments the output with cumulative statistics for each walk.
#' Sampling can be performed with or without replacement, and a proportion of steps can be sampled if desired.
#'
#' @param .num_walks An integer specifying the number of random walks to generate. Default is 25.
#' @param .nn An integer specifying the number of observations per walk. Default is 100.
#' @param .m An integer specifying the number of white balls in the urn. Default is 50.
#' @param .n An integer specifying the number of black balls in the urn. Default is 50.
#' @param .k An integer specifying the number of balls drawn from the urn. Default is 10.
#' @param .initial_value A numeric value indicating the initial value of the walks. Default is 0.
#' @param .samp A logical value indicating whether to sample the hypergeometric values. Default is TRUE.
#' @param .replace A logical value indicating whether sampling is with replacement. Default is TRUE.
#' @param .sample_size A numeric value between 0 and 1 specifying the proportion of `.nn` to sample. Default is 0.8.
#' @param .dimensions An integer specifying the number of dimensions (1, 2, or 3). Default is 1.
#'
#' @return A tibble containing the generated random walks with columns depending on the number of dimensions:
#' \itemize{
#' \item `walk_number`: Factor representing the walk number.
#' \item `step_number`: Step index.
#' \item `y`: If `.dimensions = 1`, the value of the walk at each step.
#' \item `x`, `y`: If `.dimensions = 2`, the values of the walk in two dimensions.
#' \item `x`, `y`, `z`: If `.dimensions = 3`, the values of the walk in three dimensions.
#' }
#'
#' The following are also returned based upon how many dimensions there are and could be any of x, y and or z:
#' \itemize{
#' \item `cum_sum`: Cumulative sum of `dplyr::all_of(.dimensions)`.
#' \item `cum_prod`: Cumulative product of `dplyr::all_of(.dimensions)`.
#' \item `cum_min`: Cumulative minimum of `dplyr::all_of(.dimensions)`.
#' \item `cum_max`: Cumulative maximum of `dplyr::all_of(.dimensions)`.
#' \item `cum_mean`: Cumulative mean of `dplyr::all_of(.dimensions)`.
#' }
#'
#' The tibble includes attributes for the function parameters.
#'
#' @examples
#' set.seed(123)
#' random_hypergeometric_walk()
#'
#' set.seed(123)
#' random_hypergeometric_walk(.dimensions = 2) |>
#' head() |>
#' t()
#'
#' @export
random_hypergeometric_walk <- function(
.num_walks = 25, .nn = 100, .m = 50, .n = 50, .k = 10,
.initial_value = 0, .samp = TRUE, .replace = TRUE, .sample_size = 0.8, .dimensions = 1) {
# Defensive checks
if (.num_walks < 0) {
rlang::abort(".num_walks cannot be less than 0", use_cli_format = TRUE)
}
if (.nn < 0) {
rlang::abort(".nn cannot be less than 0", use_cli_format = TRUE)
}
if (.m < 0 || .n < 0 || .k < 0) {
rlang::abort(".m, .n, and .k must be non-negative integers", use_cli_format = TRUE)
}
if (.sample_size < 0 || .sample_size > 1) {
rlang::abort(".sample_size cannot be less than 0 or more than 1", use_cli_format = TRUE)
}
if (!.dimensions %in% c(1, 2, 3)) {
rlang::abort("Number of dimensions must be 1, 2, or 3.", use_cli_format = TRUE)
}
if (.k > (.m + .n)) {
rlang::abort("`.k` cannot be greater than the sum of `.m` and `.n`.", use_cli_format = TRUE)
}
# Variables
num_walks <- as.integer(.num_walks)
nn <- as.integer(.nn)
m <- as.integer(.m)
n <- as.integer(.n)
k <- as.integer(.k)
initial_value <- as.numeric(.initial_value)
replace <- as.logical(.replace)
samp <- as.logical(.samp)
samp_size <- round(.sample_size * nn, 0)
periods <- if (samp) samp_size else nn
# Define dimension names
dim_names <- switch(.dimensions,
`1` = c("y"),
`2` = c("x", "y"),
`3` = c("x", "y", "z")
)
# Function to generate a single random walk
generate_walk <- function(walk_num) {
rand_steps <- purrr::map(
dim_names,
~ if (samp) {
sample(stats::rhyper(nn, m, n, k), size = periods, replace = replace)
} else {
stats::rhyper(periods, m, n, k)
}
)
rand_walk_column_names(rand_steps, dim_names, walk_num, periods)
}
# Generate all walks
res <- purrr::map_dfr(1:num_walks, generate_walk)
res <- res |>
dplyr::mutate(walk_number = factor(walk_number, levels = 1:num_walks))
res <- res |>
dplyr::group_by(walk_number) |>
std_cum_sum_augment(.value = dplyr::all_of(dim_names), .initial_value = initial_value) |>
dplyr::ungroup()
res <- res |>
dplyr::group_by(walk_number) |>
std_cum_prod_augment(.value = dplyr::all_of(dim_names), .initial_value = initial_value) |>
dplyr::ungroup()
res <- res |>
dplyr::group_by(walk_number) |>
std_cum_min_augment(.value = dplyr::all_of(dim_names), .initial_value = initial_value) |>
dplyr::ungroup()
res <- res |>
dplyr::group_by(walk_number) |>
std_cum_max_augment(.value = dplyr::all_of(dim_names), .initial_value = initial_value) |>
dplyr::ungroup()
res <- res |>
dplyr::group_by(walk_number) |>
std_cum_mean_augment(.value = dplyr::all_of(dim_names), .initial_value = initial_value) |>
dplyr::ungroup()
# Add attributes
attr(res, "nn") <- nn
attr(res, "num_walks") <- num_walks
attr(res, "m") <- m
attr(res, "n") <- n
attr(res, "k") <- k
attr(res, "initial_value") <- initial_value
attr(res, "replace") <- replace
attr(res, "samp") <- samp
attr(res, "samp_size") <- samp_size
attr(res, "periods") <- periods
attr(res, "fns") <- "random_hypergeometric_walk"
attr(res, "dimensions") <- .dimensions
# Return the result
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.