Nothing
"closedp.mX" <- function(X,dfreq=FALSE,mX,mname="Customized model")
{
X<-as.matrix(X)
t <- ifelse(dfreq,dim(X)[2]-1,dim(X)[2])
#####################################################################################################################################
# Validation des arguments fournis en entree
# Argument dfreq
if(!is.logical(dfreq)||!isTRUE(all.equal(length(dfreq),1))) stop("'dfreq' must be a logical object of length 1")
# Argument X
if (dfreq)
{
if (any(X[,1:t]!=1&X[,1:t]!=0)) stop("every columns of 'X' but the last one must contain only zeros and ones")
if (any((X[,t+1]%%1)!=0)) stop("the last column of 'X' must contain capture history frequencies, therefore integers")
} else {
if(any(X!=1&X!=0)) stop("'X' must contain only zeros and ones")
}
# Argument mX
mX<-as.matrix(mX)
if (!isTRUE(all.equal(2^t-1,dim(mX)[1]))) stop("'mX' must have 2^t-1 rows")
# Argument mname
if(!is.character(mname)) stop("'mname' must be a character string specifying the model's name")
#####################################################################################################################################
Y <- histfreq.t(X,dfreq=dfreq)
anaM <- glm(Y~mX,family=poisson)
NM <- sum(Y)+exp(anaM$coef[1])
varcovM <- summary(anaM)$cov.unscaled
erreurtypeM <- sqrt(exp(anaM$coef[1])+(exp(2*anaM$coef[1]))*varcovM[1,1])
M <- matrix(c(NM,erreurtypeM,anaM$dev,anaM$df.residual,anaM$aic),nrow=1)
# Preparation des sorties
dimnames(M) <- list(mname,c("abundance","stderr","deviance","df","AIC"))
ans <- list(n=sum(Y),results=M,glm=anaM)
class(ans) <- "closedp.custom"
ans
}
print.closedp.custom <- function(x, ...) {
cat("\nNumber of captured units:",x$n,"\n\n")
cat("Abundance estimation and model fit:\n")
tableau <- x$results
tableau[,c(1,2)] <- round(tableau[,c(1,2)],1)
tableau[,4] <- round(tableau[,4],0)
tableau[,c(3,5)] <- round(tableau[,c(3,5)],3)
print.default(tableau, print.gap = 2, quote = FALSE, right=TRUE)
cat("\n")
invisible(x)
}
boxplot.closedp.custom <- function(x,...) {
boxplot((x$glm$y-fitted(x$glm))/sqrt(fitted(x$glm)),main="Boxplot of Pearson Residuals for the customized model")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.