View source: R/sampleClustering.R
sigClassif | R Documentation |
Sort signals (if available) in different directories according to a clustering result.
sigClassif(data.sample, method, user.name = "")
data.sample |
list containing features, profiles and clustering results. |
method |
character vector specifying the clustering method (already performed) to use. |
user.name |
character vector specifying the user name. |
sigClassif sorts signals (if available) in different directories according to a clustering result
signals plots images in the different directories.
imgClassif
dat <- rbind(matrix(rnorm(100, mean = 0, sd = 0.3), ncol = 2),
matrix(rnorm(100, mean = 2, sd = 0.3), ncol = 2),
matrix(rnorm(100, mean = 4, sd = 0.3), ncol = 2))
tf1 <- tempfile()
write.table(dat, tf1, sep=",", dec=".")
sig <- data.frame(ID=rep(1:150, each=30), SIGNAL=rep(dnorm(seq(-2,2,length=30)),150))
tf2 <- tempfile()
write.table(sig, tf2, sep=",", dec=".")
dir.results <- tempdir()
x <- importSample(file.features=tf1,file.profiles = tf2, dir.save=dir.results)
x <- computeUnSupervised(x, K=3, method.name="K-means")
sigClassif(x, method = "K-means_preprocessed")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.