Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setupDarwin, include=FALSE, eval = Sys.info()[["sysname"]] == "Darwin"----
# The following line seems to be required by pkgdown::build_site() on my machine,
# but causes build to break with R-CMD-CHECK on GH
knitr::opts_chunk$set(dev = "png", dev.args = list(type = "cairo-png"))
## ----message=FALSE------------------------------------------------------------
library(Rcompadre)
library(dplyr)
library(ggplot2)
library(popdemo)
## ----results=FALSE------------------------------------------------------------
y <- c(0.2, 4.1, 3.7)
mean(y) # 'normal' expression
y %>% mean() # piped expression
## ----results=FALSE------------------------------------------------------------
y %>% mean() # dot is implicit
y %>% mean(x = .) # dot is explicit
## ----results=FALSE------------------------------------------------------------
x <- 1:3
y %>% data.frame(col1 = x, col2 = .) # use dot to pass object to second argument
## ----eval=FALSE---------------------------------------------------------------
# # approach 1 (nested functions)
# compadre_use <- filter(cdb_flag(Compadre), check_NA_A == FALSE)
#
# # approach 2 (intermediate step)
# compadre_flag <- cdb_flag(Compadre)
# compadre_use <- filter(compadre_flag, check_NA_A == FALSE)
## -----------------------------------------------------------------------------
compadre_use <- Compadre %>%
cdb_flag() %>% # first argument is Compadre, from previous line
subset(check_NA_A == FALSE) # first argument is output of cdb_flag()
## ----warning=FALSE------------------------------------------------------------
compadre_euro <- Compadre %>%
filter(Continent == "Europe") %>%
mutate(Nordic = Country %in% c("NOR", "SWE", "DNK", "ISL", "FIN"))
## -----------------------------------------------------------------------------
compadre_use <- Compadre %>%
mutate(has_active = mpm_has_active(.)) %>%
filter(has_active == TRUE) %>%
mutate(StudyID = cdb_id_studies(.))
## -----------------------------------------------------------------------------
compadre_unnest <- Compadre %>%
mutate(
mat_U = matU(.),
m_class_organized = MatrixClassOrganized(.)
)
## -----------------------------------------------------------------------------
compadre_lambda <- Compadre %>%
cdb_flag() %>%
filter(check_NA_A == FALSE) %>% # remove matrices with missing values
mutate(mat_A = matA(.)) %>% # extract list-column of matA
mutate(lam = sapply(mat_A, popdemo::eigs, what = "lambda"))
## -----------------------------------------------------------------------------
compadre_stage_surv <- Compadre %>%
mutate(stage_survival = lapply(matU(.), colSums))
# print vector of stage-specific survival for 20th row
compadre_stage_surv$stage_survival[[20]]
## -----------------------------------------------------------------------------
SurvFirstActive <- function(matU, first_active) colSums(matU)[first_active]
## -----------------------------------------------------------------------------
compadre_surv_first_active <- Compadre %>%
mutate(
surv_1 = mapply(
FUN = SurvFirstActive, # function
matU = matU(.), # argument 1
first_active = mpm_first_active(.)
) # argument 2
)
## -----------------------------------------------------------------------------
# count number of unique populations by species
Compadre %>%
group_by(SpeciesAccepted) %>%
summarize(n_populations = length(unique(MatrixPopulation))) %>%
arrange(desc(n_populations)) # arrange in descending order of n_pops
## -----------------------------------------------------------------------------
# subset to species with 10+ unique populations
compadre_replicated_pops <- Compadre %>%
group_by(SpeciesAccepted) %>%
mutate(n_pops = length(unique(MatrixPopulation))) %>%
ungroup() %>%
subset(n_pops >= 10)
## -----------------------------------------------------------------------------
singleRepresentativeSpecies <- Compadre %>%
group_by(SpeciesAccepted) %>%
slice(sample(1))
## ----warning=FALSE, fig.width = 6, fig.height = 4-----------------------------
ggplot2::ggplot(Compadre, aes(Lon, Lat)) +
borders(database = "world", fill = "grey80", col = NA) +
geom_point(col = "steelblue", size = 1.8, alpha = 0.8)
## ----warning=FALSE, fig.width = 6, fig.height = 4-----------------------------
# function to calculate life expectancy
lifeExpectancy <- function(matU, startLife) {
N <- solve(diag(nrow(matU)) - matU)
return(colSums(N)[startLife])
}
compadre_life_expect <- Compadre %>%
filter(
MatrixComposite != "Seasonal", # filter is the dplyr version of subset
MatrixTreatment == "Unmanipulated",
MatrixCaptivity == "W",
ProjectionInterval == "1"
) %>%
mutate(StageID = cdb_id_stages(.)) %>%
cdb_collapse(columns = "StageID") %>%
cdb_flag() %>%
filter(
check_NA_U == FALSE,
check_zero_U == FALSE,
check_singular_U == FALSE
) %>%
mutate(matU = matU(.), start_life = mpm_first_active(.)) %>%
mutate(life_expectancy = mapply(lifeExpectancy, matU, start_life)) %>%
filter(life_expectancy >= 1) %>%
mutate(OrganismType = reorder(OrganismType, life_expectancy, median))
ggplot2::ggplot(compadre_life_expect, aes(OrganismType, life_expectancy)) +
geom_boxplot() +
scale_y_log10() +
coord_flip() +
labs(x = NULL, y = "Life expectancy (years)")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.