inst/doc/a03_VectorisingRcompadre.R

## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

## ----setupDarwin, include=FALSE, eval = Sys.info()[["sysname"]] == "Darwin"----
# The following line seems to be required by pkgdown::build_site() on my
# machine, but causes build to break with R-CMD-CHECK on GH
knitr::opts_chunk$set(dev = "png", dev.args = list(type = "cairo-png"))

## -----------------------------------------------------------------------------
library(Rcompadre)
library(popdemo)
data(Compadre)

## -----------------------------------------------------------------------------
Compadre$matA <- matA(Compadre)

## -----------------------------------------------------------------------------
is.vector(Compadre$matA) # it really is a vector
is.list(Compadre$matA) # and also a list
length(Compadre$matA) # with 150 matrices
Compadre$matA[1:3] # here are the first three

## -----------------------------------------------------------------------------
Compadre$dim <- numeric(nrow(Compadre)) # create empty vector to store output
Compadre$dim[1] <- nrow(Compadre$matA[[1]]) # nrow matrix 1
Compadre$dim[2] <- nrow(Compadre$matA[[2]]) # nrow matrix 2
Compadre$dim[3] <- nrow(Compadre$matA[[3]]) # nrow matrix 3
# ... all the way to 150

## -----------------------------------------------------------------------------
# create empty vector to store output
Compadre$dim <- numeric(nrow(Compadre))

# loop through all rows of Compadre
for (i in seq_len(nrow(Compadre))) {
  Compadre$dim[i] <- nrow(Compadre$matA[[i]])
}

## -----------------------------------------------------------------------------
Compadre$dim <- sapply(Compadre$matA, nrow)

## -----------------------------------------------------------------------------
# function to determine whether matrix 'mat' has any stages with no transitions
NullStages <- function(mat) any(colSums(mat) == 0)

# apply function to every element of A
Compadre$null_stages <- sapply(Compadre$matA, NullStages)

## ----eval=FALSE---------------------------------------------------------------
#  NullStages(Compadre$matA[[1]]) # apply function to single element

## -----------------------------------------------------------------------------
Compadre$null_stages <- sapply(matA(Compadre), NullStages)

## -----------------------------------------------------------------------------
# create new columns matA, matU, matF, matC, MatrixClassAuthor, etc..
CompUnnest <- cdb_unnest(Compadre)

## -----------------------------------------------------------------------------
# apply NullStages to every matA
CompUnnest$null_stages <- sapply(CompUnnest$matA, NullStages)

# count number of dormant stages in every MatrixClassOrganized
NumberDormant <- function(stages) length(which(stages == "dorm"))
CompUnnest$n_dormant <- sapply(CompUnnest$MatrixClassOrganized, NumberDormant)

## -----------------------------------------------------------------------------
sapply(CompUnnest$matA[1:6], nrow)
vapply(CompUnnest$matA[1:6], nrow, numeric(1)) # must specify output type

## -----------------------------------------------------------------------------
lapply(CompUnnest$matU[1:4], function(m) colSums(m))

## -----------------------------------------------------------------------------
# function to calculate life expectancy
lifeExpectancy <- function(matU, startLife) {
  N <- solve(diag(nrow(matU)) - matU)
  return(colSums(N)[startLife])
}

# get index of first active stage class with mpm_first_active()
CompUnnest$start_life <- mpm_first_active(CompUnnest)

# vectorise lifeExpectancy over matU and start_life
mapply(
  lifeExpectancy, # function
  CompUnnest$matU[1:6], # first argument to vectorise over
  CompUnnest$start_life[1:6]
) # second argument to vectorise over

## ----error=TRUE---------------------------------------------------------------
# works for a single matrix
popdemo::eigs(CompUnnest$matA[[1]], what = "lambda")

# but fails when applied to all matrices because a few have missing values
CompUnnest$lambda <- sapply(CompUnnest$matA, popdemo::eigs, what = "lambda")

## -----------------------------------------------------------------------------
# add column 'check_NA_A', indicating whether matA contains missing values (T/F)
CompFlag <- cdb_flag(CompUnnest, checks = "check_NA_A")

# remove rows where matA contains missing values
CompSub <- subset(CompFlag, check_NA_A == FALSE)

# apply lambda() to every remaining matA
CompSub$lambda <- sapply(matA(CompSub), popdemo::eigs, what = "lambda")

## -----------------------------------------------------------------------------
# identify rows with no missing values in matA
no_missing <- which(CompFlag$check_NA_A == FALSE)

# create placeholder column for lambda
CompFlag$lambda <- NA

# apply eigs() to all matA with no missing values
CompFlag$lambda[no_missing] <- sapply(CompFlag$matA[no_missing],
  popdemo::eigs,
  what = "lambda"
)

## -----------------------------------------------------------------------------
lambdaFn1 <- function(mat) {
  # check mat for missing values: if TRUE return NA, else return eigs(mat)
  ifelse(anyNA(mat), NA, popdemo::eigs(mat, what = "lambda"))
}

CompUnnest$lambda <- sapply(CompUnnest$matA, lambdaFn1)

## -----------------------------------------------------------------------------
lambdaFn2 <- function(mat) {
  # try eigs(mat): if error return NA
  tryCatch(eigs(mat, what = "lambda"), error = function(err) NA)
}

CompUnnest$lambda <- sapply(CompUnnest$matA, lambdaFn2)

Try the Rcompadre package in your browser

Any scripts or data that you put into this service are public.

Rcompadre documentation built on Oct. 17, 2024, 1:07 a.m.