WG | R Documentation |
The Weibull Geometric distribution
WG(mu.link = "log", sigma.link = "log", nu.link = "logit")
mu.link |
defines the mu.link, with "log" link as the default for the mu parameter. |
sigma.link |
defines the sigma.link, with "log" link as the default for the sigma. |
nu.link |
defines the nu.link, with "log" link as the default for the nu parameter. |
The weibull geometric distribution with parameters mu
,
sigma
and nu
has density given by
f(x) = (σ μ^σ (1-ν) x^(σ - 1) \exp(-(μ x)^σ)) (1- ν \exp(-(μ x)^σ))^{-2},
for x > 0, μ > 0, σ > 0 and 0 < ν < 1.
Returns a gamlss.family object which can be used to fit a WG distribution in the gamlss()
function.
Johan David Marin Benjumea, johand.marin@udea.edu.co
barreto2011weibullRelDists
dWG
# Example 1 # Generating some random values with # known mu, sigma and nu y <- rWG(n=100, mu = 0.9, sigma = 2, nu = 0.5) # Fitting the model require(gamlss) mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family='WG', control=gamlss.control(n.cyc=5000, trace=FALSE)) # Extracting the fitted values for mu, sigma and nu # using the inverse link function exp(coef(mod, what='mu')) exp(coef(mod, what='sigma')) exp(coef(mod, what='nu')) # Example 2 # Generating random values under some model n <- 200 x1 <- runif(n) x2 <- runif(n) mu <- exp(- 0.2 * x1) sigma <- exp(1.2 - 1 * x2) nu <- 0.5 x <- rWG(n=n, mu, sigma, nu) mod <- gamlss(x~x1, mu.fo=~x1, sigma.fo=~x2, nu.fo=~1, family=WG, control=gamlss.control(n.cyc=50000, trace=FALSE)) coef(mod, what="mu") coef(mod, what="sigma") coef(mod, what='nu')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.