fssa | R Documentation |
This function performs the decomposition (embedding and functional SVD steps)
for univariate (ufssa) or multivariate (mfssa) functional singular spectrum
analysis based on the input data type. The input can be a univariate or
multivariate functional time series (funts
) object.
fssa(Y, L = Y$N/2, ntriples = 20, type = "ufssa")
Y |
an object of class |
L |
a positive integer, the window length, the default is half of FTS length. |
ntriples |
a positive integer, the number of eigentriples for the decomposition. |
type |
a string indicating the type of FSSA: "ufssa" (default for univariate FTS) or "mfssa" (default for multivariate FTS). |
An object of class fssa
, containing functional objects,
eigenvalues, window length, and original data.
data("Callcenter")
# FSSA Decomposition step:
L <- 28
U <- fssa(Callcenter, L)
plot(U, type = "values", d = 10)
plot(U, type = "vectors", d = 4)
plot(U, type = "paired", d = 6)
plot(U, type = "lcurves", d = 4, vars = 1)
plot(U, type = "lheats", d = 4)
plot(U, type = "wcor", d = 10)
plotly_funts(U$Lsingf[[1]])
plot(U$Lsingf[[2]])
## Not run:
#--------------- Multivariate FSSA Example on bivariate -----------------------------
## temperature curves and smoothed images of vegetation
data("Montana")
# MFSSA Decomposition step:
L <- 45
U <- fssa(Montana, L)
plot(U, type = "values", d = 10)
plot(U, type = "vectors", d = 4)
plot(U, type = "lheats", d = 4)
plot(U, type = "lcurves", d = 4, vars = 1)
plot(U, type = "paired", d = 6)
plot(U, type = "periodogram", d = 4)
plot(U, type = "wcor", d = 10)
plotly_funts(U$Lsingf[[1]])
plot(U$Lsingf[[2]])
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.