Nothing
#' @title brazil
#' @name brazil
#'
#' @description Retrieve Brazilian gauge data
#'
#' @param site Brazilian gauge number
#' @param variable Character. Either `stage` or `discharge`.
#' @param start_date Character. Optional start date with format
#' YYYY-MM-DD. Default is 1900-01-01.
#' @param end_date Character. End date with format YYYY-MM-DD.
#' Default is the current date.
#' @param sites Logical. If TRUE, returns a list of measurement
#' sites.
#' @param ... Additional arguments. None implemented.
#'
#' @return data frame of discharge time-series
#' @examples
#' \dontrun{
#' df <- brazil('12650000')
#' plot(df$Date, df$Q, type='l')
#' }
#' @export
brazil <- function(site,
variable = "discharge",
start_date = NULL,
end_date = NULL,
sites = FALSE,
...) {
if (sites) {
return(brazil_sites)
}
start_date <- .get_start_date(start_date)
end_date <- .get_end_date(end_date)
column_name <- .get_column_name(variable)
original_data <- try(download_hidroweb_data(site, variable),silent=TRUE)
if(is.error(original_data)==TRUE){stop('This gauge does not have a record associated with it and/or the agency website is down.')}
data <- parse_hidroweb_data(
original_data, variable = variable
)
data <- data %>%
dplyr::select(all_of(c("date", "Value"))) %>%
rename(Date = "date") %>%
rename(!!column_name := "Value") %>%
filter(.data$Date >= start_date & .data$Date <= end_date)
out <- new_tibble(
data,
original = original_data,
class = "rr_tbl"
)
return(out)
}
download_hidroweb_data <- function(site, variable, ...) {
## Download data to a temporary location
base_url <- "https://www.snirh.gov.br/hidroweb/rest/api/documento/convencionais?tipo=3&documentos="
out <- tempfile()
## res <- download.file(
## paste0(base_url, site), out,
## method = "curl", quiet = TRUE
## )
res <- GET(paste0(base_url, site), write_disk(out, overwrite = TRUE))
if (res$status != 200) {
stop(paste0("Could not download data for requested site (HTTP status: ", res$status, ")"))
}
tmpdir <- tempdir()
a <- try(unzip(out, exdir = tmpdir), silent = TRUE)
if (variable == "discharge") {
f <- unzip(a[grep("^(.*)/vazoes_(.*).zip", a)], exdir = tmpdir)
} else if (variable == "stage") {
f <- unzip(a[grep("^(.*)/cotas_(.*).zip", a)], exdir = tmpdir)
}
original_data <- read_hidroweb_data(f)
original_data <- as_tibble(original_data)
return(original_data)
}
read_hidroweb_data <- function(filename, ...) {
## TODO unsure how reliable 'skip=13' will be
data <- suppressWarnings(
read_delim(
filename, delim = ";",
locale = locale(decimal_mark = ","),
skip = 13,
progress = FALSE, show_col_types = FALSE)
)
data
}
parse_hidroweb_data <- function(data, variable = "stage", ...) {
id_cols <- c("EstacaoCodigo", "NivelConsistencia", "Data", "Hora")
if (variable == "stage") {
prefix <- "Cota"
} else if (variable == "discharge") {
prefix <- "Vazao"
id_cols <- c(id_cols, "MetodoObtencaoVazoes")
}
## Pivot longer, while keeping values and status flags
data <- data %>%
dplyr::select(all_of(id_cols), starts_with(prefix)) %>%
mutate(across(starts_with(prefix), as.character)) %>%
rename_with(
.cols = ends_with("Status"),
.fn = str_replace, pattern = "Status",
replace = "_Status"
) %>%
rename_with(
.cols = matches(paste0(prefix, "[0-9]+$")),
.fn = str_c,
"_Value"
)
data <- data %>%
pivot_longer(
-all_of(id_cols),
names_to = c("day", ".value"),
names_sep = "_"
)
## Convert strings to numeric
data <- data %>%
mutate(
Value = gsub(",", "", .data$Value),
Value = as.numeric(.data$Value),
Status = gsub(";", "", .data$Status),
Status = na_if(.data$Status, ""),
Status = as.numeric(.data$Status)
)
## Convert units if stage
if (variable == "stage") {
data <- data %>% mutate(Value = Value / 100.)
}
## Get time series
data <- data %>%
mutate(Data = as.Date(.data$Data, format = "%d/%m/%Y")) %>%
mutate(
year = lubridate::year(.data$Data),
month = lubridate::month(.data$Data),
day = gsub(prefix, "", .data$day),
day = as.numeric(.data$day)
)
## Clean `Hora` column
data <- data %>%
mutate(
Hora = gsub("^(.*) ([0-9]{2}):([0-9]{2}):([0-9]{2})$", "\\2", .data$Hora),
Hora = as.numeric(.data$Hora)
)
## Note that make_date will give NA for illegitimate
## dates (e.g. 31 Feb), so we can filter by NA
data <- data %>%
mutate(date = lubridate::make_date(.data$year, .data$month, .data$day)) %>%
filter(!is.na(.data$date)) %>%
dplyr::select(-all_of(c("Data", "year", "month", "day"))) %>%
arrange(.data$date)
## Lastly we ensure our object is a complete time series
## without any gaps
complete_ts <-
tibble(date = seq.Date(data$date[1], rev(data$date)[1], by = "1 day"))
data <- data %>%
full_join(complete_ts, by = "date")
data
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.