| TML1.noncensored | R Documentation | 
This functions computes the truncated maximum likelihood estimates of location and scale
described in Marazzi and Yohai (2004). 
It assumes that the error distribution is approximately Gaussian or log-Weibull. 
The cut-off values for outlier rejection are fixed or adaptive.
This function is a simplified version of TML.noncensored for the case without covariates.
TML1.noncensored(y, errors= c("Gaussian", "logWeibull"), cu = NULL, 
     initial = c("S", "input"), otp = c("adaptive", "fixed"), 
     cov = c("no", "parametric", "nonparametric"), input = NULL, 
     control = list(), ...)
| y | Observation vector | 
| errors | 
 | 
| cu | Preliminary minimal upper cut-off. The default is 2.5 in the Gaussian case and 1.855356 in the log-Weibull case. | 
| initial | 
 | 
| otp | 
 | 
| cov | 
 | 
| input | Initial input estimates of location and scale. 
 | 
| control |  Control parameters. For the default values, see the function  | 
| ... |   If initial="S", parameters for the computation of the initial S estimates. See the function  | 
A list with the following components:
| th0  | Initial location estimate (S or input). | 
| v0  | Initial scale estimate (S or input). | 
| nit0  | Reached number of iteration if initial="S" | 
| th1  | Final location estimate. | 
| v1  | Final scale estimate. | 
| nit1  | Reached iteration number in IRLS algorithm for final estimate (only for the log_Weibull case). | 
| tu, tl  | Final cut-off values. | 
| alpha  | Estimated proportion of retained observations. | 
| tn  | Number of retained observations. | 
| beta  | Consistency constant for scale. | 
| wi  | Vector of weights (0 for rejected observations, 1 for retained observations). | 
| CV0  | Covariance matrix of the initial estimates (th0,v0). | 
| CV1  | Covariance matrix of the final estimates (th1,v1). | 
Marazzi A., Yohai V. (2004). Adaptively truncated maximum likelihood regression with asymmetric errors. Journal of Statistical Planning and Inference, 122, 271-291.
TML.noncensored, TML1.noncensored.control, TML1.noncensored.control.S 
## Not run: 
      data(Z243)
      Cost <- Z243$CouTot                         
      y    <- log(Cost)
      ctrl <- TML1.noncensored.control(iv=1,tol=1e-3)
      z    <- TML1.noncensored(y,errors="logWeibull", initial="S",otp="adaptive",
              cov="no",control=ctrl)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.