udgamma | R Documentation |
Create UNU.RAN object for a Gamma distribution
with parameters shape
and scale
.
[Distribution] – Gamma.
udgamma(shape, scale=1, lb=0, ub=Inf)
shape |
(strictly positive) shape parameter. |
scale |
(strictly positive) scale parameter. |
lb |
lower bound of (truncated) distribution |
ub |
upper bound of (truncated) distribution |
The Gamma distribution with parameters shape
=\alpha
and scale
=\sigma
has density
f(x) = \frac{1}{{\sigma}^{\alpha}\Gamma(\alpha)} {x}^{\alpha-1} e^{-x/\sigma}
for x \ge 0
, \alpha > 0
and \sigma > 0
.
(Here \Gamma(\alpha)
is the function implemented by R's
gamma()
and defined in its help.)
The domain of the distribution can be truncated to the
interval (lb
,ub
).
An object of class "unuran.cont"
.
Josef Leydold and Wolfgang H\"ormann unuran@statmath.wu.ac.at.
N.L. Johnson, S. Kotz, and N. Balakrishnan (1994): Continuous Univariate Distributions, Volume 1. 2nd edition, John Wiley & Sons, Inc., New York. Chap. 17, p. 337.
unuran.cont
.
## Create distribution object for gamma distribution
distr <- udgamma(shape=4)
## Generate generator object; use method PINV (inversion)
gen <- pinvd.new(distr)
## Draw a sample of size 100
x <- ur(gen,100)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.