udig: UNU.RAN object for Inverse Gaussian distribution

Description Usage Arguments Details Value Author(s) References See Also Examples

View source: R/distributions.R

Description

Create UNU.RAN object for a Inverse Gaussian (Wald) distribution with mean mu and shape parameter lambda.

[Distribution] – Inverse Gaussian (Wald).

Usage

1
udig(mu, lambda, lb=0, ub=Inf)

Arguments

mu

mean (strictly positive).

lambda

shape parameter (strictly positive).

lb

lower bound of (truncated) distribution.

ub

upper bound of (truncated) distribution.

Details

The inverse Gaussian distribution with mean mu and shape parameter lambda has density

f(x) = sqrt(lambda / (2*pi*x^3)) * exp( -(lambda*(x-mu)^2) / (2*mu^2*x) )

where mu>0 and lambda>0.

The domain of the distribution can be truncated to the interval (lb,ub).

Value

An object of class "unuran.cont".

Author(s)

Josef Leydold and Wolfgang H\"ormann [email protected].

References

N.L. Johnson, S. Kotz, and N. Balakrishnan (1994): Continuous Univariate Distributions, Volume 1. 2nd edition, John Wiley & Sons, Inc., New York. Chap. 15, p. 259.

See Also

unuran.cont.

Examples

1
2
3
4
5
6
## Create distribution object for inverse Gaussian distribution
distr <- udig(mu=3, lambda=2)
## Generate generator object; use method PINV (inversion)
gen <- pinvd.new(distr)
## Draw a sample of size 100
x <- ur(gen,100)

Runuran documentation built on Nov. 17, 2017, 4:40 a.m.