Nothing
set.seed(1)
X <- matrix(rnorm(50 * 20), nrow = 50)
Y <- sign(X[, 1]) + rnorm(50)
colnames(X) <- LETTERS[1:20]
selection_list <- list(c(1, 4), 20, "A", c("D", "E"))
selection <- "A"
for(selection in selection_list){
tree1 <- SDTree(x = X, y = Y, cp = 0, predictors = selection,
Q_type = "no_deconfounding")
X_sel <- matrix(X[, selection], ncol = length(selection))
if(is.numeric(selection)){
colnames(X_sel) <- colnames(X)[selection]
}else{
colnames(X_sel) <- selection
}
tree2 <- SDTree(x = X_sel, y = Y, cp = 0,
Q_type = "no_deconfounding")
expect_equal(tree1[c(1, 3, 4)], tree2[c(1, 3, 4)])
# Forest
set.seed(1)
forest1 <- SDForest(x = X, y = Y, predictors = selection,
Q_type = "no_deconfounding", nTree = 2)
set.seed(1)
forest2 <- SDForest(x = X_sel, y = Y,
Q_type = "no_deconfounding", nTree = 2)
expect_equal(forest1[c(1, 3:11)], forest2[c(1, 3:11)])
expect_equal(predict(forest1, data.frame(X_sel)), predict(forest2, data.frame(X_sel)))
expect_equal(predict(forest1, data.frame(X)), predict(forest2, data.frame(X)))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.