| aicc | R Documentation | 
Compute the Akaike Information Criterion corrected for small samples size (Warren and Seifert, 2011).
aicc(model, env)
| model | SDMmodel object. | 
| env | rast containing the environmental variables. | 
The function is available only for Maxent and Maxnet methods.
The computed AICc
Sergio Vignali
Warren D.L., Seifert S.N., (2011). Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications, 21(2), 335–342.
auc and tss.
# Acquire environmental variables
files <- list.files(path = file.path(system.file(package = "dismo"), "ex"),
                    pattern = "grd",
                   full.names = TRUE)
predictors <- terra::rast(files)
# Prepare presence and background locations
p_coords <- virtualSp$presence
bg_coords <- virtualSp$background
# Create SWD object
data <- prepareSWD(species = "Virtual species",
                   p = p_coords,
                   a = bg_coords,
                   env = predictors,
                   categorical = "biome")
# Train a model
model <- train(method = "Maxnet",
               data = data,
               fc = "l")
# Compute the AICc
aicc(model,
     env = predictors)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.