Nothing
omegalduva<-function(THRES, L, Ree, PSI, ncat, display = TRUE){
## Omega reliability and relative efficiency with correlated residuals
## based on non-linear UVA model
siz <- size(L)
m <- siz[1]
r <- siz[2]
if(m < r){
L <- transpose(L)
siz <- size(L)
m <- siz[1]
r <- siz[2]
}
espe <- matrix(0,m,1)
sds <- matrix(0,m,1)
I <- diag(m)
Robsld <- matrix(0,m,m)
Robsli <- matrix(0,m,m)
#Step 1 Model-implied inter-item correlation matrices
Rld <- L %*% transpose(L) + PSI %*% Ree %*% PSI
Rli <- L %*% transpose(L) + PSI %*% I %*% PSI
#Step 2. Model-implied items means and standard deviations
for (i in 1:m){
out <- espeit(transpose(THRES[,i]))
espe[i] <- out$esp
sds[i] <- sqrt(out$var)
}
#Step 3. Model-implied total test variance (denominator term in omega)
SDD <- matrix(0,m,m)
diag(SDD)=sds
for (i in 1:m){
for (j in 1:m){
if (i==j){
Robsld[i,j] <- 1
Robsli[i,j] <- 1
}
else {
Robsld[i,j] <- pmpolycho(THRES[,i], THRES[,j], espe[i], espe[j], sds[i], sds[j], Rld[i,j], ncat)
Robsli[i,j] <- pmpolycho(THRES[,i], THRES[,j], espe[i], espe[j], sds[i], sds[j], Rli[i,j], ncat)
}
}
}
Covobsld <- SDD %*% Robsld %*% SDD
Covobsli <- SDD %*% Robsli %*% SDD
vartotld <- sum(sum(Covobsld))
vartotli <- sum(sum(Covobsli))
#Step 4. Numerator term in Omega. This term is the same for omega-ld and for omega-li
sumanume <- 0
for (i in 1:m){
tmp1 <- ppolyser(L[i], THRES[,i], sds[i])
tmp2 <- tmp1 * sds[i]
sumanume <- sumanume + tmp2
}
nume <- sumanume^2
# nonlinear-omega estimates and relative eficiency
omld <- nume / vartotld
omli <- nume/vartotli
relef <- (omld * (1-omli)) / (omli*(1-omld))
if (display == TRUE){
cat(sprintf(' Omega reliability estimate: %7.5f\n',omld))
cat(sprintf(' Predicted omega estimate if items were locally independent: %7.5f\n',omli))
cat(sprintf(' Relative efficiency of the locally dependent scores: %7.5f\n',relef))
}
OUT<-list('omld'=omld,'omli'=omli, 'relef'=relef)
invisible(OUT)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.