Nothing
#' @title Random Undersampling (RUS)
#'
#' @description Resampling with RUS.
#'
#' @param x feature matrix.
#' @param y a factor class variable with two classes.
#'
#' @details
#' Random Undersampling (RUS) is a method of removing negative
#' samples until balance is achieved.
#'
#' Can work with classes more than 2.
#'
#' @return a list with resampled dataset.
#'
#' \item{x_new}{Resampled feature matrix.}
#' \item{y_new}{Resampled target variable.}
#'
#' @author Fatih Saglam, saglamf89@gmail.com
#'
#' @examples
#'
#' set.seed(1)
#' x <- rbind(matrix(rnorm(2000, 3, 1), ncol = 2, nrow = 1000),
#' matrix(rnorm(100, 5, 1), ncol = 2, nrow = 50))
#' y <- as.factor(c(rep("negative", 1000), rep("positive", 50)))
#'
#' plot(x, col = y)
#'
#' # resampling
#' m <- RUS(x = x, y = y)
#'
#' plot(m$x_new, col = m$y_new)
#'
#' @rdname RUS
#' @export
RUS <- function(x, y) {
x <- as.matrix(x)
if (is.data.frame(x)) {
x <- as.matrix(x)
}
if (!is.data.frame(x) & !is.matrix(x)) {
stop("x must be a matrix or dataframe")
}
if (!is.factor(y)) {
stop("y must be a factor")
}
var_names <- colnames(x)
x <- as.matrix(x)
p <- ncol(x)
n <- nrow(x)
class_names <- levels(y)
n_classes <- sapply(class_names, function(m) sum(y == m))
k_class <- length(class_names)
n_classes_min <- min(n_classes)
n_neededToRemove <- n_classes - n_classes_min
x_classes <- lapply(class_names, function(m) x[y == m,, drop = FALSE])
y_classes <- lapply(class_names, function(m) y[y == m])
for (i in 1:k_class) {
if (n_neededToRemove[i] == 0) {
next
}
i_sample <- sample(1:n_classes[i], size = n_neededToRemove[i])
x_classes[[i]] <- x_classes[[i]][-i_sample,, drop = FALSE]
y_classes[[i]] <- y_classes[[i]][-i_sample]
}
x_new <- do.call(rbind, x_classes)
y_new <- unlist(y_classes)
colnames(x_new) <- var_names
return(list(
x_new = x_new,
y_new = y_new
))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.