beaver.gibbs | R Documentation |
This function implements a Gibbs sampler for the normal changepoint model applied to the beaver temperature data used in Example 6.22 and Practical 11.7 of Davison (2003), which should be consulted for details.
beaver.gibbs(init, y, R = 10, a = 1, b = 0.05)
init |
Initial values for parameters |
y |
A series of normal observations |
R |
Number of iterations of sampler |
a |
Value of a hyperparameter |
b |
Value of a hyperparameter |
This is provided simply so that readers spend less time typing. It is not intended to be robust and general code.
A matrix of size R x 6, whose first four columns contain the values of the parameters for the iterations. Columns 5 and 6 contain the log likelihood and log prior for that iteration.
Anthony Davison (anthony.davison@epfl.ch
)
Davison, A. C. (2003) Statistical Models. Cambridge University Press. Practical 11.7.
## From Example 11.7:
data(beaver)
system.time( gibbs.out <- beaver.gibbs(c(36, 40, 3, 38), beaver$temp, R=1000))
par(mfrow=c(2,3))
plot.ts(gibbs.out[,1],main="mu1") # time series plot for mu1
plot.ts(gibbs.out[,2],main="mu2") # time series plot for mu2
plot.ts(gibbs.out[,3],main="lambda") # time series plot for lambda
plot.ts(gibbs.out[,4],main="gamma") # time series plot for gamma
plot.ts(gibbs.out[,5],main="log likelihood") # and of log likelihood
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.