Description Usage Arguments Details Value References See Also Examples
This function constructs knockoffs of variables distributed as a discrete Markov chain.
1 2 | knockoffDMC(X, pInit, Q, groups = NULL, seed = 123, cluster = NULL,
display_progress = FALSE)
|
X |
an integer matrix of size n-by-p containing the original variables. |
pInit |
an array of length K, containing the marginal distribution of the states for the first variable. |
Q |
an array of size (p-1,K,K), containing a list of p-1 transition matrices between the K states of the Markov chain. |
groups |
an array of length p, describing the group membership of each variable (default: NULL). |
seed |
an integer random seed (default: 123). |
cluster |
a computing cluster object created by makeCluster (default: NULL). |
display_progress |
whether to show progress bar (default: FALSE). |
Each element of the matrix X should be an integer value between 0 and K-1. The transition matrices contained in Q are defined such that P[X_{j+1}=k|X_{j}=l]=Q[j,l,k].
An integer matrix of size n-by-p containing the knockoff variables.
sesia2019SNPknock \insertRefsesia2019multiSNPknock
Other knockoffs: knockoffGenotypes
,
knockoffHMM
,
knockoffHaplotypes
1 2 3 4 5 6 7 8 9 10 11 | # Generate data
p = 10; K = 5;
pInit = rep(1/K,K)
Q = array(stats::runif((p-1)*K*K),c(p-1,K,K))
for(j in 1:(p-1)) { Q[j,,] = Q[j,,] / rowSums(Q[j,,]) }
X = sampleDMC(pInit, Q, n=20)
# Generate knockoffs
Xk = knockoffDMC(X, pInit, Q)
# Generate group-knockoffs for groups of size 3
groups = rep(seq(p), each=3, length.out=p)
Xk = knockoffDMC(X, pInit, Q, groups=groups)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.