getPreds | R Documentation |
This function extracts predictions and standard errors from objects of class 'glmssn.predict' or 'influenceSSN'. Predictions are extracted for unobserved locations, while cross-validation predictions are extracted for observed locations.
getPreds(x, pred.type = "cv")
x |
an object of class predict.glmssn or influenceSSN-class |
pred.type |
prediction type, either "pred" or "cv". The "pred" option indicates that a 'glmssn.predict' object is being accessed and a text file containing predictions and standard errors for the predictions is exported. When the "cv" option is used, objects of class influenceSSN are accessed and cross-validation predictions and standard errors are exported. |
getPreds
returns a matrix containing the point identifier (pid), the
predictions, and the standard errors for the predictions.
Erin E. Peterson support@SpatialStreamNetworks.com
predict
, influenceSSN-class
library(SSN) #for examples, copy MiddleFork04.ssn directory to R's temporary directory copyLSN2temp() # NOT RUN # Create a SpatialStreamNetork object that also contains prediction sites #mf04p <- importSSN(paste0(tempdir(),'/MiddleFork04.ssn'), # predpts = "pred1km", o.write = TRUE) #use mf04p SpatialStreamNetwork object, already created data(mf04p) #for examples only, make sure mf04p has the correct path #if you use importSSN(), path will be correct mf04p <- updatePath(mf04p, paste0(tempdir(),'/MiddleFork04.ssn')) # get some model fits stored as data objects data(modelFits) #NOT RUN use this one #fitSp <- glmssn(Summer_mn ~ ELEV_DEM + netID, # ssn.object = mf04p, EstMeth = "REML", family = "Gaussian", # CorModels = c("Exponential.tailup","Exponential.taildown", # "Exponential.Euclid"), addfunccol = "afvArea") #Update the path in fitSp, will vary for each users installation fitSp$ssn.object <- updatePath(fitSp$ssn.object, paste0(tempdir(),'/MiddleFork04.ssn')) # Extract predictions and standard errors for the prediction sites # make sure the distance matrix is there createDistMat(mf04p, predpts = "pred1km", o.write = TRUE) #create predictions fitSpPred <- predict(fitSp, predpointsID = "pred1km") class(fitSpPred) fitSpgetPreds <- getPreds(fitSpPred, pred.type = "pred") head(fitSpgetPreds) # Extract cross-validation predictions for the observed sites in two ways: fitSpRes <- residuals(fitSp) class(fitSpRes) # Extract from the influenceSSN class object fitSpResGetCV <- getPreds(fitSpRes, pred.type = "cv") head(fitSpResGetCV) # Extract from the glmssn.predict class object fitSpResGetCV2 <- getPreds(fitSpPred, pred.type = "cv") # These values are identical identical(fitSpResGetCV,fitSpResGetCV) ## TRUE
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.