View source: R/getSSNdata.frame.r
getSSNdata.frame | R Documentation |
The getSSNdata.frame
function extracts the points data data.frame,
either observation data or prediction data, from the specified SSN object.
getSSNdata.frame(x, Name = "Obs")
x |
an object of class SpatialStreamNetwork-class, influenceSSN-class, glmssn-class, or "glmssn.predict". |
Name |
the internal name of the data set in the object |
The internal Name
for observed data in objects of class SpatialStreamNetwork
is "Obs" and it is the default. If another Name
is specified, it must
represent a prediction data set in the SpatialStreamNetwork-class
,
influenceSSN-class
, glmssn-class
, or "glmssn.predict" object. For
SpatialStreamNetwork
objects, these names are obtained using the call
ssn@predpoints@ID. For all other object classes, the names are
obtained using the call object$ssn.object@predpoints@ID. See examples for additional
details.
A data.frame
.
Jay Ver Hoef support@SpatialStreamNetworks.com
putSSNdata.frame
library(SSN) #for examples, copy MiddleFork04.ssn directory to R's temporary directory copyLSN2temp() # NOT RUN # Create a SpatialStreamNetork object that also contains prediction sites #mf04 <- importSSN(paste0(tempdir(),'/MiddleFork04.ssn', o.write = TRUE)) #use mf04 SpatialStreamNetwork object, already created data(mf04) #for examples only, make sure mf04p has the correct path #if you use importSSN(), path will be correct mf04 <- updatePath(mf04, paste0(tempdir(),'/MiddleFork04.ssn')) obsDF <- getSSNdata.frame(mf04) head(obsDF) # get some model fits stored as data objects data(modelFits) #NOT RUN use this one #fitSp <- glmssn(Summer_mn ~ ELEV_DEM + netID, # ssn.object = mf04p, EstMeth = "REML", family = "Gaussian", # CorModels = c("Exponential.tailup","Exponential.taildown", # "Exponential.Euclid"), addfunccol = "afvArea") #for examples only, make sure fitSp has the correct path #if you use importSSN(), path will be correct fitSp$ssn.object <- updatePath(fitSp$ssn.object, paste0(tempdir(),'/MiddleFork04.ssn')) # Get the data.frame from an influenceSSN object and plot the residuals fitSpRes <- residuals(fitSp) fitSpResDF <- getSSNdata.frame(fitSpRes) # NOT RUN #plot(fitSpResDF[,"_resid.crossv_"],fitSpResDF[,"_resid_"], pch = 19, # ylab = "Cross-validation Residuals", xlab = "Raw Residuals") # Get the data.frame for the prediction locations fitSpPred <- predict(fitSp, predpointsID = "pred1km") predNames<- fitSpPred$ssn.object@predpoints@ID fitSpPredDF <- getSSNdata.frame(fitSpPred, predNames[1]) head(fitSpPredDF)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.