Description Usage Arguments Details Value Note Author(s) References See Also Examples
Calculate estimate of the exceedance fraction FL = Pr [X > L] and exact confidence limits for random sample from normal/lognormal distribution. This function should only be used for complete samples.
1 | efraction.exact(x, gam = 0.95, L=NA ,logx=TRUE,wpnt=FALSE)
|
x |
vector of data values |
gam |
one-sided confidence level γ. Default is 0.95 |
L |
L is specified limit for the exceedance fraction; e.g., the occupational exposure limit |
logx |
If |
wpnt |
if |
The exceedance fraction represent the proportion of the X's that exceed a given limit Lp. The null hypothesis of interest is Ho: F ≥ Fo = 1-p; i.e., Fo is the maximum proportion of the population that can exceed the limit Lp. The null hypothesis is rejected if the 100 γ\% UCL for FL is less than Fo , indicating that the exposure profile is acceptable. The type I error rate for this test is less than or equal to α = 1 - γ.
A LIST with components:
f |
estimate of exceedance fraction for lognormal distribution as % |
fe.LCL |
100*γ% exact lower confidence limit % units |
fe.UCL |
100*γ% exact upper confidence limit % units |
L |
L is specified limit for the exceedance fraction, e.g. the occupational exposure limit |
gam |
one-sided confidence level γ. Default is 0.95 |
Logx |
If |
(fe.LCL, fe.UCL) is an approximate 100(2γ -1) percent
confidence interval for F. The R function uniroot
is used to find the
noncentrality parameter of noncentral t distribution to calculate CL's
for U = (L - μ) / σ where F = pnorm(U). In some versions of R this
may cause a warning message. See R bug report RP 9171 full precision
was not achieved in 'pnt'. This warning message may occur in uniroot
calls to pt
and does not effect the precision of the final result
E. L. Frome
Johnson, N. L. and B. L. Welch (1940), "Application of the Non-Central t-Distribution," Biometrika, 31(3/4), 362-389.
Lyles, R. H. and L. L. Kupper (1996), "On strategies for comparing occupational exposure data to limits," American Industrial Hygiene Association Journal. 57:6-15.
Frome, E. L. and Wambach, P. F. (2005), "Statistical Methods and Software for the Analysis of Occupational Exposure Data with Non-Detectable Values," ORNL/TM-2005/52,Oak Ridge National Laboratory, Oak Ridge, TN 37830. Available at: http://www.csm.ornl.gov/esh/aoed/ORNLTM2005-52.pdf
Ignacio, J. S. and W. H. Bullock (2006), A Strategy for Assesing and Managing Occupational Exposures, Third Edition, AIHA Press, Fairfax, VA.
Mulhausen, J. R. and J. Damiano (1998), A Strategy for Assessing and Managing Occupational Exposures, Second Edition, AIHA Press, Fairfax, VA.
Help files for efraction.ml
,efclnp
,
percentile.exact
, efraction.exact
,
aihand
1 2 3 4 5 6 7 8 | # calculate exceedance fraction and exact CLs for Example data
# Appendix Mulhausen and Damiano(1998) Ignacion and Bullock (2006
data(aihand)
x <- aihand$x ; det <- rep(1,length(x))
aiha<-data.frame(x,det) # complete data
unlist(efraction.exact(x,gam=0.95,L=5) ) # exact CLs
unlist(efraction.ml(aiha,gam=0.95,L=5)) # ML CLs
unlist(efclnp(aiha,L=5)) # nonparametric CLs
|
Loading required package: survival
fe fe.LCL fe.UCL L gam Logx
4.2410699 0.8570166 15.2826865 5.0000000 0.9500000 1.0000000
f f.LCL f.UCL L gam
3.7227271 0.5937415 14.6450772 5.0000000 0.9500000
fnp fnp.LCL fnp.UCL L gamma
6.6666667 0.3413713 27.9396194 5.0000000 0.9500000
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.