# pleicf: Product Limit Estimate for Interval Censored Data In STAND: Statistical Analysis of Non-Detects

## Description

Compute Product Limit Estimate (PLE) of F(x) for interval censored data (i.e., the nonparametric maximum likelihood estimate that generalizes the Kaplan-Meier estimate to interval censored data).

## Usage

 1 pleicf(dd,nondet=TRUE,mine=1e-06,maxc=10000,eps=1e-14)

## Arguments

 dd n by 2 matrix or data frame (see note below) nondet if TRUE, dd is left censored data mine minimum error for convergence in icfit. Default = 1e-06. maxc maximum number of iterations. Default is 10000. eps adjustment factor described by Ng. Default is 1e-14.

## Details

This function is a driver function for icfit that uses an EM-algorithm applied to interval censored data (see Turnbull, 1976).

## Value

Data frame with columns

 a value of jth uncensored value (ordered) ple PLE of F(x) at a surv 1 - F(), i.e the "survival" or "exceedance" function prob prob[X = x] from icfit n sample size

## Note

If nondet is TRUE column 1 of dd is the data value and column 2 is 1 if a detect and 0 otherwise. If nondet is FALSE dd contains the left and right endpoints required by icfit.

E. L. Frome

## References

Fay, M. P. (1999), "Comparing Several Score Tests for Interval Censored Data," Statistics in Medicine,18:273-85. (Corr: 1999, Vol 19, p.2681).

Ng, M. P. (2002), "A Modification of Peto's Nonparametric Estimation of Survival Curves for Interval-Censored Data," Biometrics, 58, 439-442.

Turnbull, B. W. (1976), "The Empirical Distribution Function with Arbitrarily Grouped, Censored and Truncated Data," Journal of the Royal Statistical Society, Series B (Methodological), 38(3), 290-295.