Description Usage Arguments Details Value Note Author(s) References See Also Examples
Compute Product Limit Estimate(PLE) of F(x) for positive data with non-detects (left censored data)
1 | plend(dd)
|
dd |
An n by 2 matrix or data frame with |
The product limit estimate (PLE) of the cumulative distribution function was first proposed by Kaplan and Meier (1958) for right censored data. Turnbull (1976) provides a more general treatment of nonparametric estimation of the distribution function for arbitrary censoring. For randomly left censored data, the PLE is defined as follows [Schmoyer et al. (1996)]. Let a[1]< … < a[m] be the m distinct values at which detects occur, r[j] is the number of detects at a[j], and n[j] is the sum of non-detects and detects that are less than or equal to a[j]. Then the PLE is defined to be 0 for 0 ≤ x ≤ a0, where a0 is a[1] or the value of the detection limit for the smallest non-detect if it is less than a[1]. For a0 ≤ x < a[m] the PLE is F[j]= ∏ (n[j] -- r[j])/n[j], where the product is over all a[j] > x, and the PLE is 1 for x ≥ a[m]. When there are only detects this reduces to the usual definition of the empirical cumulative distribution function.
Data frame with columns
a(j) |
value of jth detect (ordered) |
ple(j) |
PLE of F(x) at a(j) |
n(j) |
number of detects or non-detects ≤ a(j) |
r(j) |
number of detects equal to a(j) |
surv(j) |
1 - ple(j) is PLE of S(x) |
In survival analysis S(x) = 1 - F(x) is the survival function i.e., S(x) = P[X > x]. In environmental and occupational situations 1 - F(x) is the "exceedance" function, i.e., C(x) = 1 - F(x) = P [X > x].
E. L. Frome
Frome, E. L. and Wambach, P. F. (2005), "Statistical Methods and Software for the Analysis of Occupational Exposure Data with Non-Detectable Values," ORNL/TM-2005/52,Oak Ridge National Laboratory, Oak Ridge, TN 37830. Available at: http://www.csm.ornl.gov/esh/aoed/ORNLTM2005-52.pdf
Kaplan, E. L. and Meier, P. (1958), "Nonparametric Estimation from Incomplete Observations," Journal of the American Statistical Association, 457-481.
Schmoyer, R. L., J. J. Beauchamp, C. C. Brandt and F. O. Hoffman, Jr. (1996), "Difficulties with the Lognormal Model in Mean Estimation and Testing," Environmental and Ecological Statistics, 3, 81-97.
Turnbull, B. W. (1976), "The Empirical Distribution Function with Arbitrarily Grouped, Censored and Truncated Data," Journal of the Royal Statistical Society, Series B (Methodological), 38(3), 290-295.
1 2 3 4 5 | |
Loading required package: survival
a ple n r surv
1 0.015 0.09677419 3 0 0.90322581
2 0.025 0.16129032 5 2 0.83870968
3 0.040 0.25806452 8 3 0.74193548
4 0.045 0.29032258 9 1 0.70967742
5 0.050 0.35483871 11 2 0.64516129
6 0.070 0.38709677 12 1 0.61290323
7 0.075 0.41935484 13 1 0.58064516
8 0.095 0.45161290 14 1 0.54838710
9 0.100 0.48387097 15 1 0.51612903
10 0.125 0.54838710 17 2 0.45161290
11 0.145 0.61290323 19 2 0.38709677
12 0.150 0.67741935 21 2 0.32258065
13 0.165 0.70967742 22 1 0.29032258
14 0.270 0.74193548 23 1 0.25806452
15 0.290 0.77419355 24 1 0.22580645
16 0.345 0.80645161 25 1 0.19354839
17 0.395 0.87096774 27 2 0.12903226
18 0.420 0.90322581 28 1 0.09677419
19 0.495 0.93548387 29 1 0.06451613
20 0.840 0.96774194 30 1 0.03225806
21 1.140 1.00000000 31 1 0.00000000
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.