Nothing
# Malware plot
dataset <- 'malware'
filename <- paste("inst/dataset_simulations/",dataset,'_sims.RData',sep = '')
load(filename)
xlab_title <- TeX('Malware Covariates')
# Time comparison
level_order <-
factor(sss_sota_comparison_df$algo,
level = c('S3_logistic','SOTA_logistic','S3_probit','SOTA_probit'))
label= TeX('Sampler')
label_breaks <- c('S3_logistic','SOTA_logistic','S3_probit','SOTA_probit')
label_names <- unname(TeX(c('S^3 Logistic', 'SOTA Logistic',
'S^3 Probit', 'SOTA Probit')))
# sss_sota_comparison_df %>% group_by(algo) %>% summarise(time_mean = mean(time_mean))
# Both logistic and probit
time_comparison <-
ggplot(sss_sota_comparison_df, aes(x=level_order, y=time_mean*1000, color=algo, shape=algo)) +
geom_point(size=4) +
xlab(TeX('Sampler')) + ylab(TeX('Time per iteration (ms)')) +
scale_color_manual(name=label, breaks=label_breaks, labels=label_names,
values = c('Black','Black','Gray','Gray')) +
scale_shape_manual(name=label, breaks=label_breaks, labels=label_names,
values = c(4,1,4,1)) +
scale_x_discrete(name=TeX('Sampler'),
breaks=c('S3_logistic','SOTA_logistic','S3_probit','SOTA_probit'),
labels=unname(TeX(c('S^3 Logistic', 'SOTA Logistic',
'S^3 Probit', 'SOTA Probit')))) +
geom_errorbar(aes(ymax=(time_mean+time_sd)*1000,
ymin=(time_mean-time_sd)*1000),position=position_dodge(.9),
show.legend = FALSE) +
# scale_y_continuous(limits =c(0,40)) +
theme_classic(base_size = 14) +
theme(legend.position = 'bottom', legend.key.width=unit(1,"cm"), legend.text=element_text(size=10)) +
guides(color=guide_legend(nrow=1,byrow=TRUE)) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1))
time_comparison
shared_legend <- get_legend(time_comparison, position = NULL)
# Variable selection comparison
variable_section_df <-
sss_sota_comparison_df %>% select(z_avg, n, p) %>%
summarise(prob_covariate_slab = rowMeans(do.call(cbind, z_avg)),n=mean(n),p=mean(p)) %>%
mutate(prob_covariate_slab=prob_covariate_slab, covariate_index=1:n(), n=n, p=p) %>%
arrange(desc(prob_covariate_slab)) %>%
mutate(xaxis =1:n())
# variable_section <-
# ggplot(variable_section_df,
# aes(x=xaxis, y=sort(prob_covariate_slab, decreasing = TRUE), color=algo)) +
# geom_point(shape=4) + xlab(xlab_title) + ylab(TeX('Marginal posterior probabilities')) +
# scale_color_manual(name=TeX('Sampler'), breaks = c("S3_logistic", "S3_probit"),
# labels=unname(TeX(c('S^3 Logistic','S^3 Probit'))), values = c('Black', 'Gray')) +
# scale_x_continuous(trans='log10') + theme_classic(base_size = 9) +
# theme(legend.position = 'bottom', legend.key.width=unit(1,"cm"),legend.text=element_text(size=10)) +
# guides(color=guide_legend(nrow=1,byrow=TRUE))
# shared_legend <- get_legend(variable_section, position = NULL)
variable_section_logistic <-
ggplot(variable_section_df %>% filter(algo=="S3_logistic"),
aes(x=xaxis, y=sort(prob_covariate_slab, decreasing = TRUE), color=algo)) +
geom_point(shape=4) + xlab(xlab_title) +
ylab(TeX('Marginal posterior probabilities')) +
scale_color_manual(name=TeX('Sampler'), breaks = c("S3_logistic", "S3_probit"),
labels=unname(TeX(c('S^3 Logistic','S^3 Probit'))), values = c('Black', 'Gray')) +
scale_x_continuous(trans='log10') + theme_classic(base_size = 14) +
theme(legend.position = 'bottom', legend.key.width=unit(1,"cm"),legend.text=element_text(size=10)) +
guides(color='none')
variable_section_logistic
variable_section_probit <-
ggplot(variable_section_df %>% filter(algo=="S3_probit"),
aes(x=xaxis, y=sort(prob_covariate_slab, decreasing = TRUE), color=algo)) +
geom_point(shape=4) + xlab(xlab_title) + ylab(TeX('Marginal posterior probabilities')) +
scale_color_manual(name=TeX('Sampler'), breaks = c("S3_logistic", "S3_probit"),
labels=unname(TeX(c('S^3 Logistic','S^3 Probit'))), values = c('Black', 'Gray')) +
scale_x_continuous(trans='log10') + theme_classic(base_size = 14) +
theme(legend.position = 'bottom', legend.key.width=unit(1,"cm"),legend.text=element_text(size=10)) +
guides(color='none')
variable_section_probit
# variable_section_plot_combined <-
# ggarrange(variable_section_logistic, variable_section_probit, common.legend = TRUE, legend.grob = shared_legend, legend = "bottom", nrow=1)
# variable_section_plot_combined
# Combined plot
plot_combined <-
ggarrange(variable_section_logistic, variable_section_probit,
time_comparison, common.legend=TRUE, legend.grob=shared_legend,
legend = "bottom", nrow=1)
plot_combined
plot_name <- paste("inst/dataset_simulations/",dataset,'_plot_new.pdf',sep = '')
# ggsave(filename = plot_name, plot = plot_combined, width = 10, height = 4)
################################################################################
# Multiple datasets plot
filename2 <- paste("inst/dataset_simulations/multiple_dataset_sims_new.RData",sep = '')
load(filename2)
sss_sota_multi_dataset_time_comparison_df <-
sss_sota_multi_dataset_time_comparison_df %>%
mutate(algo=if_else((algo=='S3_linear')|(algo=='S3_probit'),'S3','SOTA'))
sss_sota_multi_dataset_time_comparison_df$dataset[sss_sota_multi_dataset_time_comparison_df$dataset=='Synthetic_Binary'] <- 'Synthetic Binary'
sss_sota_multi_dataset_time_comparison_df$dataset[sss_sota_multi_dataset_time_comparison_df$dataset=='Synthetic_Continuous'] <- 'Synthetic Continuous'
# Time comparison
time_comparison <-
ggplot(sss_sota_multi_dataset_time_comparison_df, aes(x=dataset, y=time_mean*1000, color=algo)) +
geom_point(size=3, shape=4) + xlab(TeX('Datasets')) + ylab(TeX('Time per iteration (ms)')) +
scale_x_discrete(limits=sss_sota_multi_dataset_time_comparison_df$dataset) +
scale_color_manual(name=TeX('Sampler'), breaks = c("S3", "SOTA"),
labels=unname(TeX(c('S^3','SOTA'))),
values = c('Black', 'Gray')) +
geom_errorbar(aes(ymax=(time_mean+2*time_sd/sqrt(no_chains))*1000,
ymin=(time_mean-2*time_sd/sqrt(no_chains))*1000),
position=position_dodge(.0)) +
scale_y_continuous(trans='log10') + theme_classic(base_size = 12) +
theme(legend.position = 'bottom', legend.key.width=unit(1,"cm"), legend.text=element_text(size=10)) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1, size=10)) +
guides(color=guide_legend(nrow=1,byrow=TRUE))
time_comparison
plot_name2 <- paste("inst/dataset_simulations/multi_dataset_time_plot_new.pdf",sep = '')
# ggsave(filename = plot_name2, plot = time_comparison, width = 5, height = 4)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.