Nothing
run_MAVE_expectations <- function(mave.model){
expect_length(mave.model$models$outcome$details$bw.delta, 1)
expect_true(
all(is.na(mave.model$models$outcome$details$beta.delta)) ||
(length(mave.model$models$outcome$details$beta.delta)==5)
)
expect_true(mave.model$models$outcome$bandwidth > 0)
expect_true(mave.model$models$outcome$coefficients[1] > 0)
expect_equal(crossprod(mave.model$models$outcome$coefficients)[,], 1)
if( !is.null(mave.model$models$outcome$details$bw.last)
&& ! is.null(mave.model$models$outcome$details$beta.last)){
if(
mave.model$models$outcome$details$last.optimized == 'bandwidth'){
expect_true(mave.model$models$outcome$details$bw.last$value <=
mave.model$models$outcome$details$beta.last$fval)
} else {
expect_true(mave.model$models$outcome$details$bw.last$value >=
mave.model$models$outcome$details$beta.last$fval)
}
}
}
test_that("MAVE: ise vs. mse", {
testthat::skip_on_cran()
object.mave.ise <-
fit_SensIAT_within_group_model(
group.data = SensIAT_example_data,
outcome_modeler = fit_SensIAT_single_index_norm1coef_model,
id = Subject_ID,
outcome = Outcome,
time = Time,
knots = c(60,260,460),
End = 830,
intensity.args=list(bandwidth=30),
outcome.args=list(bw.selection='ise')
)
run_MAVE_expectations(object.mave.ise)
object.mave.mse <-
fit_SensIAT_within_group_model(
group.data = SensIAT_example_data,
outcome_modeler = fit_SensIAT_single_index_norm1coef_model,
id = Subject_ID,
outcome = Outcome,
time = Time,
knots = c(60,260,460),
End = 830,
intensity.args=list(bandwidth=30),
outcome.args=list(bw.selection='mse')
)
run_MAVE_expectations(object.mave.mse)
expect_identical(
coef(object.mave.ise$models$intensity),
coef(object.mave.mse$models$intensity)
)
})
test_that("MAVE: grid vs. optim", {
testthat::skip_on_cran()
object.mave.grid <-
fit_SensIAT_within_group_model(
group.data = SensIAT_example_data,
outcome_modeler = fit_SensIAT_single_index_norm1coef_model,
id = Subject_ID,
outcome = Outcome,
time = Time,
knots = c(60,260,460),
End = 830,
intensity.args=list(bandwidth=30),
outcome.args=list(bw.method='grid', bw.selection = 'ise')
)
run_MAVE_expectations(object.mave.grid)
object.mave.optim <-
fit_SensIAT_within_group_model(
group.data = SensIAT_example_data,
outcome_modeler = fit_SensIAT_single_index_norm1coef_model,
id = Subject_ID,
outcome = Outcome,
time = Time,
knots = c(60,260,460),
End = 830,
intensity.args=list(bandwidth=30),
outcome.args=list(bw.method='optim', bw.selection = 'ise')
)
run_MAVE_expectations(object.mave.optim)
object.mave.optimize <-
fit_SensIAT_within_group_model(
group.data = SensIAT_example_data,
outcome_modeler = fit_SensIAT_single_index_norm1coef_model,
id = Subject_ID,
outcome = Outcome,
time = Time,
knots = c(60,260,460),
End = 830,
intensity.args=list(bandwidth=30),
outcome.args=list(bw.method='optimize', bw.selection = 'ise')
)
run_MAVE_expectations(object.mave.optimize)
expect_equal(
coef(object.mave.grid$models$outcome),
coef(object.mave.optim$models$outcome)
)
expect_equal(
coef(object.mave.grid$models$outcome),
coef(object.mave.optimize$models$outcome)
)
})
test_that("MAVE: reestimate.coef", {
testthat::skip_on_cran()
object.mave.wo <-
fit_SensIAT_within_group_model(
group.data = SensIAT_example_data,
outcome_modeler = fit_SensIAT_single_index_norm1coef_model,
id = Subject_ID,
outcome = Outcome,
time = Time,
knots = c(60,260,460),
End = 830,
intensity.args=list(bandwidth=30),
outcome.args=list(bw.method='optimize', bw.selection = 'ise', reestimate.coef = 0)
)
run_MAVE_expectations(object.mave.wo)
expect_true(is.na(object.mave.wo$models$outcome$details$beta.delta))
expect_true(is.null(object.mave.wo$models$outcome$details$beta.last))
object.mave.rc <-
fit_SensIAT_within_group_model(
group.data = SensIAT_example_data,
outcome_modeler = fit_SensIAT_single_index_norm1coef_model,
id = Subject_ID,
outcome = Outcome,
time = Time,
knots = c(60,260,460),
End = 830,
intensity.args=list(bandwidth=30),
outcome.args=list(bw.method='optimize', bw.selection = 'ise', reestimate.coef = 1)
)
run_MAVE_expectations(object.mave.wo)
object.mave.rc.grid <-
fit_SensIAT_within_group_model(
group.data = SensIAT_example_data,
outcome_modeler = fit_SensIAT_single_index_norm1coef_model,
id = Subject_ID,
outcome = Outcome,
time = Time,
knots = c(60,260,460),
End = 830,
intensity.args=list(bandwidth=30),
outcome.args=list(bw.method='grid', bw.selection = 'ise', reestimate.coef = 1)
)
run_MAVE_expectations(object.mave.rc.grid)
object.mave.rc.optim <-
fit_SensIAT_within_group_model(
group.data = SensIAT_example_data,
outcome_modeler = fit_SensIAT_single_index_norm1coef_model,
id = Subject_ID,
outcome = Outcome,
time = Time,
knots = c(60,260,460),
End = 830,
intensity.args=list(bandwidth=30),
outcome.args=list(bw.method='optim', bw.selection = 'ise', reestimate.coef = 1)
)
run_MAVE_expectations(object.mave.rc.optim)
object.mave.rc.optimize <-
fit_SensIAT_within_group_model(
group.data = SensIAT_example_data,
outcome_modeler = fit_SensIAT_single_index_norm1coef_model,
id = Subject_ID,
outcome = Outcome,
time = Time,
knots = c(60,260,460),
End = 830,
intensity.args=list(bandwidth=30),
outcome.args=list(bw.method='optimize', bw.selection = 'ise', reestimate.coef = 1)
)
run_MAVE_expectations(object.mave.rc.optimize)
expect_identical(object.mave.wo$models$intensity$coefficients,
object.mave.rc.optimize$models$intensity$coefficients)
expect_identical(object.mave.wo$models$intensity$coefficients,
object.mave.rc.optim$models$intensity$coefficients)
expect_identical(object.mave.wo$models$intensity$coefficients,
object.mave.rc.grid$models$intensity$coefficients)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.