This vignette shows how to use Signac to annotate flow-sorted synovial cells by integrating SignacX with Seurat. We also compared Signac to another popular cell type annotation tool, SingleR. We start with raw counts.
all_times <- list() # store the time for each chunk knitr::knit_hooks$set(time_it = local({ now <- NULL function(before, options) { if (before) { now <<- Sys.time() } else { res <- difftime(Sys.time(), now, units = "secs") all_times[[options$label]] <<- res } } })) knitr::opts_chunk$set( tidy = TRUE, tidy.opts = list(width.cutoff = 95), message = FALSE, warning = FALSE, time_it = TRUE ) celltypes = readRDS(file = "fls/celltypes_amp_synovium.rds") True_labels = readRDS(file = "fls/celltypes_amp_synovium_true.rds") load(file = "fls/SingleR_Results.rda")
Read the CEL-seq2 data.
ReadCelseq <- function (counts.file, meta.file) { E = suppressWarnings(readr::read_tsv(counts.file)); gns <- E$gene; E = E[,-1] E = Matrix::Matrix(as.matrix(E), sparse = TRUE) rownames(E) <- gns E } counts.file = "./fls/celseq_matrix_ru10_molecules.tsv.gz" meta.file = "./fls/celseq_meta.immport.723957.tsv" E = ReadCelseq(counts.file = counts.file, meta.file = meta.file) M = suppressWarnings(readr::read_tsv(meta.file)) # filter data based on depth and number of genes detected kmu = Matrix::colSums(E != 0) kmu2 = Matrix::colSums(E) E = E[,kmu > 200 & kmu2 > 500] # filter by mitochondrial percentage logik = grepl("^MT-", rownames(E)) MitoFrac = Matrix::colSums(E[logik,]) / Matrix::colSums(E) * 100 E = E[,MitoFrac < 20]
require(SingleR) data("hpca") Q = SingleR(sc_data = E, ref_data = hpca$data, types = hpca$main_types, fine.tune = F, numCores = 4) save(file = "fls/SingleR_Results.rda", Q) True_labels = M$type[match(colnames(E), M$cell_name)] saveRDS(True_labels, file = "fls/celltypes_amp_synovium_true.rds")
Start with the standard pre-processing steps for a Seurat object.
library(Seurat)
Create a Seurat object, and then perform SCTransform normalization. Note:
# load data synovium <- CreateSeuratObject(counts = E, project = "FACs") # run sctransform synovium <- SCTransform(synovium, verbose = F)
Perform dimensionality reduction by PCA and UMAP embedding. Note:
# These are now standard steps in the Seurat workflow for visualization and clustering synovium <- RunPCA(synovium, verbose = FALSE) synovium <- RunUMAP(synovium, dims = 1:30, verbose = FALSE) synovium <- FindNeighbors(synovium, dims = 1:30, verbose = FALSE)
library(SignacX)
Generate Signac labels for the Seurat object. Note:
# Run Signac labels <- Signac(synovium, num.cores = 4) celltypes = GenerateLabels(labels, E = synovium)
xx = celltypes$CellTypes xx = as.character(xx) xx[xx == "Plasma.cells"] = "B" xx[xx == "NonImmune"] = as.character(celltypes$CellStates)[xx == "NonImmune"] xx[xx == "B"] = "B" xx[xx == "Fibroblasts"] = "F" xx[xx == "MPh"] = "M" xx[xx == "TNK"] = "T" xx[celltypes$CellStates == "NK"] = "NK" xy = xx True_labels[True_labels == "B cell"] = "B" True_labels[True_labels == "Fibroblast"] = "F" True_labels[True_labels == "Monocyte"] = "M" True_labels[True_labels == "T cell"] = "T" tabsignac = table(FACs = True_labels, Signac = xy)
SignacX (rows are FACs labels, columns are SignacX)
knitr::kable(tabsignac, format = "html")
xx = Q$labels xx[xx %in% c("Macrophage", "DC", "Monocyte", "Platelets", "Neutrophils")] = "M" xx[xx %in% c("B_cell", "Pre-B_cell_CD34-", "Pro-B_cell_CD34+")] = "B" xx[xx == "Fibroblasts"] = "F" xx[xx == "T_cells"] = "T" xx[xx %in% c("Astrocyte", "Osteoblasts", "Tissue_stem_cells", "Smooth_muscle_cells", "MSC")] = "NonImmune" xx[xx == "NK_cell"] = "NK" xx[xx == "Chondrocytes"] = "Chondr." tab = table(FACs = True_labels, SingleR = xx)
SingleR (rows are FACs labels, columns are SingleR)
knitr::kable(tab, format = "html")
Note:
Signac accuracy
logik = xy != "Unclassified" Signac_Accuracy = round(sum(xy[logik] == True_labels[logik]) / sum(logik) * 100, 2) Signac_Accuracy
SingleR accuracy
SingleR_Accuracy = round(sum(xx == True_labels) / sum(logik) * 100, 2) SingleR_Accuracy
Save results
saveRDS(synovium, file = "synovium_signac.rds") saveRDS(celltypes, file = "synovium_signac_celltypes.rds")
write.csv(x = t(as.data.frame(all_times)), file = "fls/tutorial_times_signac-seurat_singler_AMP_RA.csv")
Session Info
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.