Nothing
#' Generate Dataset with crossing hazards
#'
#' @param condition condition row of Design dataset
#' @param fixed_objects fixed objects of Design dataset
#'
#' @details
#' Condidtion has to contain the following columns:
#'
#' * n_trt number of paitents in treatment arm
#' * n_ctrl number of patients in control arm
#' * crossing time of crossing of the hazards
#' * hazard_ctrl hazard in the control arm = hazard before onset of treatment
#' effect
#' * hazard_trt_before hazard in the treatment arm before onset of treatment effect
#' * hazard_trt_after hazard in the treatment arm afert onset of treatment effect
#'
#' If fixed_objects is given and contains an element `t_max`, then this is used
#' as the cutoff for the simulation used internally. If t_max is not given in
#' this way the 1-(1/10000) quantile of the survival distribution in the control
#' or treatment arm is used (which ever is larger).
#'
#' @return
#' For generate_crossing_hazards: A dataset with the columns t (time) and trt
#' (1=treatment, 0=control), evt (event, currently TRUE for all observations)
#'
#' @export
#' @describeIn generate_crossing_hazards simulates a dataset with crossing
#' hazards
#'
#' @examples
#' one_simulation <- merge(
#' assumptions_crossing_hazards(),
#' design_fixed_followup(),
#' by=NULL
#' ) |>
#' head(1) |>
#' generate_crossing_hazards()
#' head(one_simulation)
#' tail(one_simulation)
generate_crossing_hazards <- function(condition, fixed_objects=NULL){
# simulate treatment group
if (condition$crossing < 0){
# if crossing is smaller than 0 stop with error
stop(gettext("Time of crossing has to be >= 0"))
} else if (condition$crossing == 0){
# if crossing is 0 leave out period bevore treatment effect
data_trt <- data.frame(
t = miniPCH::rpch_fun(
c(0),
c(condition$hazard_trt_after),
discrete = TRUE
)(condition$n_trt),
trt = 1,
evt = TRUE
)
} else {
# if crossing is positive simulate in the time intervals bevore and after
# treatment effect
data_trt <- data.frame(
t = miniPCH::rpch_fun(
c(0, condition$crossing),
c(condition$hazard_trt_before, condition$hazard_trt_after),
discrete = TRUE
)(condition$n_trt),
trt = 1,
evt = TRUE
)
}
# simulate control group with constant hazard from 0
data_ctrl <- data.frame(
t = miniPCH::rpch_fun(
c(0),
c(condition$hazard_ctrl),
discrete = TRUE
)(condition$n_trt),
trt = 0,
evt = TRUE
)
rbind(data_trt, data_ctrl)
}
#' Create an empty assumtions data.frame for generate_crossing_hazards
#'
#' @param print print code to generate parameter set?
#'
#' @return For assumptions_crossing_hazards: a design tibble with default values invisibly
#'
#' @details assumptions_crossing_hazards generates a default design `data.frame`
#' for use with generate_crossing_hazards If print is `TRUE` code to produce
#' the template is also printed for copying, pasting and editing by the user.
#' (This is the default when run in an interactive session.)
#'
#' @export
#' @describeIn generate_crossing_hazards generate default assumptions `data.frame`
#'
#' @examples
#' Design <- assumptions_crossing_hazards()
#' Design
assumptions_crossing_hazards <- function(print=interactive()){
skel <- "expand.grid(
crossing=m2d(seq(0, 10, by=2)), # crossing after of 0, 1, ..., 10 months
hazard_ctrl=m2r(24), # median survival control of 24 months
hazard_trt_before=m2r(18), # median survival before crossing 18 months
hazard_trt_after=m2r(36), # median survival after crossing 36 months
random_withdrawal=m2r(120) # median time to random withdrawal 10 years
)
"
if(print){
cat(skel)
}
invisible(
skel |>
str2expression() |>
eval()
)
}
#' Calculate hr after crossing the hazard functions
#'
#' @param design design data.frame
#' @param target_power_ph target power under proportional hazards
#' @param final_events target events for inversion of Schönfeld Formula, defaults to `condition$final_events`
#' @param target_alpha target one-sided alpha level for the power calculation
#'
#' @return For hr_after_crossing_from_PH_effect_size: the design data.frame passed as
#' argument with the additional column hazard_trt.
#' @export
#'
#' @describeIn generate_crossing_hazards Calculate hr after crossing of the hazards from PH effect size
#'
#' @details `hr_after_crossing_from_PH_effect_size` calculates the hazard ratio
#' after crossing of hazards as follows: First, the hazard ratio needed
#' to archive the desired power under proportional hazards is calculated by
#' inverting Schönfeld's sample size formula. Second the median survival times
#' for both arm under this hazard ratio and proportional hazards are
#' calculated. Finally the hazard rate of the treatment arm after crossing of
#' hazards is set such that the median survival time is the same as the one
#' calculated under proportional hazards.
#'
#' This is a heuristic and to some extent arbitrary approach to calculate
#' hazard ratios that correspond to reasonable and realistic scenarios.
#'
#' @examples
#' my_design <- merge(
#' assumptions_crossing_hazards(),
#' design_fixed_followup(),
#' by=NULL
#' )
#'
#' my_design$final_events <- ceiling((my_design$n_trt + my_design$n_ctrl)*0.75)
#' my_design$hazard_trt <- NA
#' my_design <- hr_after_crossing_from_PH_effect_size(my_design, target_power_ph=0.9)
#' my_design
hr_after_crossing_from_PH_effect_size <- function(design, target_power_ph=NA_real_, final_events=NA_real_, target_alpha=0.025){
get_hr_after <- function(condition, target_power_ph=NA_real_, final_events=NA_real_){
if(is.na(final_events)){
if(hasName(condition, "final_events")){
final_events <- condition$final_events
} else {
stop("final_events not given and not present in condition")
}
}
if(is.na(target_power_ph)){
if(hasName(condition, "effect_size_ph")){
target_power_ph <- condition$effect_size_ph
} else {
stop(gettext("target_ph_power not given and effect_size_ph not present in design"))
}
}
scale <- 1/condition$hazard_ctrl
median_ctrl <- miniPCH::qpch_fun(0, scale*condition$hazard_ctrl)(0.5)
if(target_power_ph == 0){
median_trt <- median_ctrl
ph_hr <- 1
} else {
ph_hr <- hr_required_schoenfeld(
final_events,
alpha=target_alpha,
beta=(1-target_power_ph),
p=(condition$n_ctrl/(condition$n_ctrl + condition$n_trt))
)
median_trt <- miniPCH::qpch_fun(0, scale*condition$hazard_ctrl*ph_hr)(0.5)
}
median_trt_before <- miniPCH::qpch_fun(0, scale*condition$hazard_trt_before)(0.5)
if(scale*median_ctrl <= condition$crossing ||
scale*median_trt_before <= condition$crossing
){
warning("Median survival reached before crossing of the hazards curves, calculation not possible")
condition$hazard_trt_after <- NA_real_
condition$target_median_trt <- median_trt * scale
condition$target_hr <- ph_hr
return(condition)
}
if(condition$crossing != 0){
target_fun_hazard_after <- function(hazard_after){
sapply(hazard_after, \(h){
median_trt -
miniPCH::qpch_fun(
c(0, condition$crossing/scale),
c(condition$hazard_trt_before*scale, h)
)(0.5)
})
}
} else {
target_fun_hazard_after <- function(hazard_after){
sapply(hazard_after, \(h){
median_trt -
miniPCH::qpch_fun(
c(0),
c(h)
)(0.5)
})
}
}
# setting the lower interval bound to 0 and f.lower to -Inf
# and extendInt="upX" guarantees, that the root is searched on all positives
# but also that the target function is never evaluated at non-positive values
my_root <- uniroot(
target_fun_hazard_after,
interval=c(0, 2),
f.lower = -Inf,
extendInt = "upX",
tol=2*.Machine$double.eps
)
condition$target_median_trt <- median_trt * scale
condition$hazard_trt_after <- my_root$root / scale
condition$target_hr <- ph_hr
condition
}
result <- design |>
split(1:nrow(design)) |>
lapply(get_hr_after, target_power_ph=target_power_ph, final_events=final_events) |>
do.call(what=rbind)
result
}
#' @describeIn generate_crossing_hazards calculate censoring rate from censoring proportion
#'
#' @return for cen_rate_from_cen_prop_crossing_hazards: design data.frame with the
#' additional column random_withdrawal
#' @export
#'
#' @details cen_rate_from_cen_prop_crossing_hazards takes the proportion of
#' censored patients from the column `censoring_prop`. This column describes
#' the proportion of patients who are censored randomly before experiencing an
#' event, without regard to administrative censoring.
#'
#' @examples
#' design <- data.frame(
#' crossing = c(2, 4, 6),
#' hazard_ctrl = c(0.05, 0.05, 0.05),
#' hazard_trt_before = c(0.025, 0.025, 0.025),
#' hazard_trt_after = c(0.1, 0.1, 0.1),
#' censoring_prop = c(0.1, 0.3, 0.2),
#' n_trt = c(50, 50, 50),
#' n_ctrl = c(50, 50, 50),
#' followup = c(200, 200, 200),
#' recruitment = c(50, 50, 50)
#' )
#' cen_rate_from_cen_prop_crossing_hazards(design)
cen_rate_from_cen_prop_crossing_hazards <- function(design){
rowwise_fun <- function(condition){
if(is.na(condition$hazard_trt_after)){
return(NA_real_)
}
if(condition$censoring_prop == 0){
condition$random_withdrawal <- 0.
return(condition)
}
# set t_max to 1-1/10000 quantile of control or treatment survival function
# whichever is later
t_max <- max(
log(10000) / condition$hazard_ctrl,
log(10000) / condition$hazard_trt
)
if(condition$crossing != 0){
cumhaz_trt <- miniPCH::chpch_fun(
c( 0, condition$crossing),
c(condition$hazard_trt_before, condition$hazard_trt_after)
)(t_max)
} else {
cumhaz_trt <- miniPCH::chpch_fun(
c(condition$crossing),
c(condition$hazard_trt_after)
)(t_max)
}
cumhaz_ctrl <- miniPCH::chpch_fun(
c( 0),
c(condition$hazard_ctrl)
)(t_max)
condition$random_withdrawal <- censoring_prop_from_cumhaz(
n_trt = condition$n_trt,
n_ctrl = condition$n_ctrl,
censoring_prop = condition$censoring_prop,
cumhaz_ctrl = cumhaz_ctrl,
cumhaz_trt = cumhaz_trt,
t_max = t_max
)
condition
}
result <- design |>
split(1:nrow(design)) |>
lapply(rowwise_fun) |>
do.call(what=rbind)
result
}
#' Calculate true summary statistics for scenarios with crossing hazards
#'
#' @param Design Design data.frame for crossing hazards
#' @param cutoff_stats (optionally named) cutoff time, see details
#' @param milestones (optionally named) vector of times at which milestone survival should be calculated
#' @param fixed_objects additional settings, see details
#'
#' @return For true_summary_statistics_crossing_hazards: the design data.frame
#' passed as argument with additional columns,
#'
#' @export
#'
#' @details
#'
#' `cutoff_stats` are the times used to calculate the statistics like average
#' hazard ratios and RMST, that are only calculated up to a certain point.
#'
#' @describeIn generate_crossing_hazards calculate true summary statistics for crossing hazards
#'
#' @examples
#' my_design <- merge(
#' assumptions_crossing_hazards(),
#' design_fixed_followup(),
#' by=NULL
#' )
#' my_design$follwup <- 15
#' my_design <- true_summary_statistics_crossing_hazards(my_design)
#' my_design
true_summary_statistics_crossing_hazards <- function(Design, cutoff_stats=NULL, milestones=NULL, fixed_objects=NULL){
true_summary_statistics_crossing_hazards_rowwise <- function(condition, cutoff_stats, milestones){
# create functions for treatment group
if (condition$crossing < 0){
# if crossing is smaller than 0 stop with error
stop(gettext("Time of crossing has to be >= 0"))
} else if (condition$crossing == 0){
# if crossing is 0 leave out period bevore treatment effect
real_stats <- fast_real_statistics_pchaz(
Tint_trt = 0, lambda_trt = condition$hazard_trt_after,
Tint_ctrl= 0, lambda_ctrl = condition$hazard_ctrl,
cutoff = cutoff_stats, N_trt = condition$n_trt, N_ctrl = condition$n_ctrl, milestones = milestones
)
} else {
# if crossing is positive create piecewise constant hazards and respective
# functions in the time intervals bevore and after treatment effect
real_stats <- fast_real_statistics_pchaz(
Tint_trt = c(0, condition$crossing), lambda_trt = c(condition$hazard_trt_before, condition$hazard_trt_after),
Tint_ctrl= 0, lambda_ctrl = condition$hazard_ctrl,
cutoff = cutoff_stats, N_trt = condition$n_trt, N_ctrl = condition$n_ctrl, milestones = milestones
)
}
res <- cbind(
condition,
real_stats
)
row.names(res) <- NULL
res
}
Design <- Design |>
split(1:nrow(Design)) |>
lapply(true_summary_statistics_crossing_hazards_rowwise, cutoff_stats = cutoff_stats, milestones=milestones)
Design <- do.call(rbind, Design)
Design
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.