R/generate_delayed_effect.R

Defines functions true_summary_statistics_delayed_effect cen_rate_from_cen_prop_delayed_effect hr_after_onset_from_PH_effect_size assumptions_delayed_effect generate_delayed_effect

Documented in assumptions_delayed_effect cen_rate_from_cen_prop_delayed_effect generate_delayed_effect hr_after_onset_from_PH_effect_size true_summary_statistics_delayed_effect

#' Generate Dataset with delayed effect
#'
#' @param condition condition row of Design dataset
#' @param fixed_objects fixed objects of Design dataset
#'
#' @details
#' Condidtion has to contain the following columns:
#'
#'   * n_trt number of paitents in treatment arm
#'   * n_ctrl number of patients in control arm
#'   * delay time until onset of effect
#'   * hazard_ctrl hazard in the control arm = hazard before onset of treatment
#'     effect
#'   * hazard_trt hazard in the treatment arm afert onset of treatment effect
#'
#' If fixed_objects is given and contains an element `t_max`, then this is used
#' as the cutoff for the simulation used internally. If t_max is not given in
#' this way the 1-(1/10000) quantile of the survival distribution in the control
#' or treatment arm is used (which ever is larger).
#'
#' @return
#' For generate_delayed_effect: A dataset with the columns t (time) and trt
#' (1=treatment, 0=control), evt (event, currently TRUE for all observations)
#'
#' @export
#' @describeIn generate_delayed_effect simulates a dataset with delayed
#'   treatment effect
#'
#' @examples
#' one_simulation <- merge(
#'     assumptions_delayed_effect(),
#'     design_fixed_followup(),
#'     by=NULL
#'   ) |>
#'   head(1) |>
#'   generate_delayed_effect()
#' head(one_simulation)
#' tail(one_simulation)
generate_delayed_effect <- function(condition, fixed_objects=NULL){

  # simulate treatment group
  if (condition$delay < 0){
    # if delay is smaller than 0 stop with error
    stop(gettext("Delay has to be >= 0"))
  } else if (condition$delay == 0){
    # if delay is 0 leave out period bevore treatment effect
    data_trt <- data.frame(
      t = miniPCH::rpch_fun(c(0), c(condition$hazard_trt), discrete = TRUE)(condition$n_trt),
      trt = 1,
      evt = TRUE
    )
  } else {
    # if delay is positive simulate in the time intervals bevore and after
    # treatment effect
    data_trt <- data.frame(
      t = miniPCH::rpch_fun(c(0, condition$delay), c(condition$hazard_ctrl, condition$hazard_trt), discrete = TRUE)(condition$n_trt),
      trt = 1,
      evt = TRUE
    )
  }

  # simulate control group with constant hazard from 0
  data_ctrl <- data.frame(
    t = miniPCH::rpch_fun(c(0), c(condition$hazard_ctrl), discrete = TRUE)(condition$n_ctrl),
    trt = 0,
    evt = TRUE
  )

  rbind(data_trt, data_ctrl)
}

#' Create an empty assumtions data.frame for generate_delayed_effect
#'
#' @param print print code to generate parameter set?
#'
#' @return For assumptions_delayed_effect: a design tibble with default values invisibly
#'
#' @details assumptions_delayed_effect generates a default design `data.frame`
#'   for use with generate_delayed_effect. If print is `TRUE` code to produce
#'   the template is also printed for copying, pasting and editing by the user.
#'   (This is the default when run in an interactive session.)
#'
#' @export
#' @describeIn generate_delayed_effect generate default assumptions `data.frame`
#'
#' @examples
#' Design <- assumptions_delayed_effect()
#' Design
assumptions_delayed_effect <- function(print=interactive()){
  skel <- "expand.grid(
  delay=m2d(seq(0, 10, by=2)), # delay of 0, 1, ..., 10 months
  hazard_ctrl=m2r(24),         # median survival control of 24 months
  hazard_trt=m2r(36),          # median survival treatment of 36 months
  random_withdrawal=m2r(120)   # median time to random withdrawal 10 years
)
"

  if(print){
    cat(skel)
  }

  invisible(
    skel |>
      str2expression() |>
      eval()
  )
}

#' Calculate hr after onset of treatment effect
#'
#' @param design design data.frame
#' @param target_power_ph target power under proportional hazards
#' @param final_events target events for inversion of Schönfeld Formula
#' defaults to `condition$final_events`
#' @param target_alpha target one-sided alpha level for the power calculation
#'
#' @return For hr_after_onset_from_PH_effect_size: the design data.frame passed as
#'   argument with the additional column hazard_trt.
#' @export
#'
#' @describeIn generate_delayed_effect Calculate hr after onset of treatment effect of the hazards from PH effect size
#'
#' @details `hr_after_onset_from_PH_effect_size` calculates the hazard ratio
#'   after onset of treatment effect as follows: First, the hazard ratio needed
#'   to archive the desired power under proportional hazards is calculated by
#'   inverting Schönfeld's sample size formula. Second the median survival times
#'   for both arm under this hazard ratio and proportional hazards are
#'   calculated. Finally the hazard rate of the treatment arm after onset of
#'   treatment effect is set such that the median survival time is the same as
#'   the one calculated under proportional hazards.
#'
#'   This is a heuristic and to some extent arbitrary approach to calculate
#'   hazard ratios that correspond to reasonable and realistic scenarios.
#'
#' @examples
#' my_design <- merge(
#'   assumptions_delayed_effect(),
#'   design_fixed_followup(),
#'   by=NULL
#' )
#'
#' my_design$hazard_ctrl <- 0.05
#' my_design$final_events <- ceiling((my_design$n_trt + my_design$n_ctrl)*0.75)
#' my_design$hazard_trt <- NA
#' my_design <- hr_after_onset_from_PH_effect_size(my_design, target_power_ph=0.9)
#' my_design
hr_after_onset_from_PH_effect_size <- function(design, target_power_ph=NA_real_, final_events=NA_real_, target_alpha=0.025){

  get_hr_after <- function(condition, target_power_ph=NA_real_, final_events=NA_real_){

    if(is.na(final_events)){
      if(hasName(condition, "final_events")){
        final_events <- condition$final_events
      } else {
        stop("final_events not given and not present in condition")
      }
    }

    if(is.na(target_power_ph)){
      if(hasName(condition, "effect_size_ph")){
        target_power_ph <- condition$effect_size_ph
      } else {
        stop(gettext("target_ph_power not given and effect_size_ph not present in design"))
      }
    }

    # scaling the hazards and medians to give better accuracy for the optimizer
    scale <- 1/condition$hazard_ctrl
    median_ctrl <- miniPCH::qpch_fun(0, scale*condition$hazard_ctrl        )(0.5)

    if(target_power_ph == 0){
      condition$hazard_trt <- condition$hazard_ctrl
      condition$target_median_trt <- median_ctrl * scale
      condition$target_hr <- 1
      return(condition)
    }

    ph_hr <- hr_required_schoenfeld(
      final_events,
      alpha=target_alpha,
      beta=(1-target_power_ph),
      p=(condition$n_ctrl/(condition$n_ctrl + condition$n_trt))
    )
    median_trt  <- miniPCH::qpch_fun(0, scale*condition$hazard_ctrl * ph_hr)(0.5)

    if(median_trt*scale <= condition$delay ||
       median_ctrl*scale <= condition$delay){
      warning("Median survival is shorter than delay of treatment effect, calculation not possible")
      condition$hazard_trt <- NA_real_
      condition$target_median_trt <- median_trt * scale
      condition$target_hr <- ph_hr
      return(condition)
    }

    if(condition$delay != 0){
      target_fun_hazard_after <- function(hazard_after){
        sapply(hazard_after, \(h){
          median_trt -
            miniPCH::qpch_fun(
              c(0, condition$delay/scale),
              c(condition$hazard_ctrl*scale, h)
            )(0.5)
        })
      }
    }else {
      target_fun_hazard_after <- function(hazard_after){
        sapply(hazard_after, \(h){
          median_trt -
            miniPCH::qpch_fun(
              c(0),
              c(h)
            )(0.5)
        })
      }
    }

    # setting the lower interval bound to 0 and f.lower to -Inf
    # and extendInt="upX" guarantees, that the root is searched on all positives
    # but also that the target function is never evaluated at non-positive values
    my_root <- uniroot(
      target_fun_hazard_after,
      interval=c(0, 2),
      f.lower = -Inf,
      extendInt = "upX",
      tol=2*.Machine$double.eps
    )

    condition$target_median_trt <- median_trt * scale
    condition$hazard_trt <- my_root$root / scale
    condition$target_hr <- ph_hr
    condition
  }

  result <- design |>
    split(1:nrow(design)) |>
    lapply(get_hr_after, target_power_ph=target_power_ph, final_events=final_events) |>
    do.call(what=rbind)

  result

}

#' @describeIn generate_delayed_effect calculate censoring rate from censoring proportion
#'
#' @return for cen_rate_from_cen_prop_delayed_effect: design data.frame with the
#'   additional column random_withdrawal
#' @export
#'
#' @details cen_rate_from_cen_prop_delayed_effect takes the proportion of
#'   censored patients from the column `censoring_prop`. This column describes
#'   the proportion of patients who are censored randomly before experiencing an
#'   event, without regard to administrative censoring.
#'
#' @examples
#' design <- expand.grid(
#'   delay=seq(0, 10, by=5),            # delay of 0, 1, ..., 10 days
#'   hazard_ctrl=0.2,                   # hazard under control and before treatment effect
#'   hazard_trt=0.02,                   # hazard after onset of treatment effect
#'   censoring_prop=c(0.1, 0.25, 0.01), # 10%, 25%, 1% random censoring
#'   followup=100,                      # followup of 100 days
#'   n_trt=50,                          # 50 patients treatment
#'   n_ctrl=50                          # 50 patients control
#' )
#' cen_rate_from_cen_prop_delayed_effect(design)
cen_rate_from_cen_prop_delayed_effect <- function(design){

  rowwise_fun <- function(condition){
    if(is.na(condition$hazard_trt)){
      return(NA_real_)
    }

    if(condition$censoring_prop == 0){
      condition$random_withdrawal <- 0.
      return(condition)
    }

    # set t_max to 1-1/10000 quantile of control or treatment survival function
    # whichever is later
    t_max <- max(
      log(10000) / condition$hazard_ctrl,
      log(10000) / condition$hazard_trt
    )

    if(condition$delay != 0){
      cumhaz_trt <- miniPCH::chpch_fun(
        c(                    0,      condition$delay),
        c(condition$hazard_ctrl, condition$hazard_trt)
      )(t_max)
    } else {
      cumhaz_trt <- miniPCH::chpch_fun(
        c(                   0),
        c(condition$hazard_trt)
      )(t_max)
    }

    cumhaz_ctrl <- miniPCH::chpch_fun(
      c(                    0),
      c(condition$hazard_ctrl)
    )(t_max)

    condition$random_withdrawal <- censoring_prop_from_cumhaz(
      n_trt          = condition$n_trt,
      n_ctrl         = condition$n_ctrl,
      censoring_prop = condition$censoring_prop,
      cumhaz_ctrl    = cumhaz_ctrl,
      cumhaz_trt     = cumhaz_trt,
      t_max          = t_max
    )

    condition
  }

  result <- design |>
    split(1:nrow(design)) |>
    lapply(rowwise_fun) |>
    do.call(what=rbind)

  result

}

#' Calculate true summary statistics for scenarios with delayed treatment effect
#'
#' @param Design Design data.frame for delayed effect
#' @param cutoff_stats (optionally named) cutoff times, see details
#' @param milestones (optionally named) vector of times at which milestone survival should be calculated
#' @param fixed_objects additional settings, see details
#'
#' @return For true_summary_statistics_delayed_effect: the design data.frame
#'   passed as argument with additional columns
#'
#' @export
#'
#' @details
#'
#' `cutoff_stats` are the times used to calculate the statistics like average
#' hazard ratios and RMST, that are only calculated up to a certain point.
#'
#' @describeIn generate_delayed_effect calculate true summary statistics for delayed effect
#'
#' @examples
#' my_design <- merge(
#'     assumptions_delayed_effect(),
#'     design_fixed_followup(),
#'     by=NULL
#'   )
#' my_design <- true_summary_statistics_delayed_effect(my_design)
#' my_design
true_summary_statistics_delayed_effect <- function(Design, cutoff_stats=NULL, milestones=NULL, fixed_objects=NULL){

  true_summary_statistics_delayed_effect_rowwise <- function(condition, cutoff_stats, milestones){

    # create functions for treatment group
    if (condition$delay < 0){
      # if delay is smaller than 0 stop with error
      stop(gettext("Delay has to be >= 0"))
    } else if (condition$delay == 0){
      # if delay is 0 leave out period bevore treatment effect
      real_stats <- fast_real_statistics_pchaz(
        Tint_trt = 0,  lambda_trt = condition$hazard_trt,
        Tint_ctrl = 0, lambda_ctrl = condition$hazard_ctrl,
        cutoff = cutoff_stats, N_trt = condition$n_trt, N_ctrl = condition$n_ctrl, milestones=milestones
      )

    } else {
      # if delay is positive create piecewise constant hazards and respective
      # functions in the time intervals bevore and after treatment effect
      real_stats <- fast_real_statistics_pchaz(
        Tint_trt = c(0, condition$delay),  lambda_trt = c(condition$hazard_ctrl, condition$hazard_trt),
        Tint_ctrl = 0, lambda_ctrl = condition$hazard_ctrl,
        cutoff = cutoff_stats, N_trt = condition$n_trt, N_ctrl = condition$n_ctrl, milestones=milestones
      )

    }

    res <- cbind(
      condition,
      real_stats
    )

    row.names(res) <- NULL
    res
  }


  Design <- Design |>
    split(1:nrow(Design)) |>
    lapply(true_summary_statistics_delayed_effect_rowwise, milestones=milestones, cutoff_stats=cutoff_stats)

  Design <- do.call(rbind, Design)

  Design
}

Try the SimNPH package in your browser

Any scripts or data that you put into this service are public.

SimNPH documentation built on April 12, 2025, 9:13 a.m.