Description Usage Arguments Details Value Note See Also Examples
Groups the SparkDataFrame using the specified columns and applies the R function to each group.
1 2 3 4 5 6 7 |
x |
a SparkDataFrame or GroupedData. |
... |
additional argument(s) passed to the method. |
func |
a function to be applied to each group partition specified by grouping column of the SparkDataFrame. See Details. |
schema |
the schema of the resulting SparkDataFrame after the function is applied.
The schema must match to output of |
cols |
grouping columns. |
func is a function of two arguments. The first, usually named key
(though this is not enforced) corresponds to the grouping key, will be an
unnamed list of length(cols) length-one objects corresponding
to the grouping columns' values for the current group.
The second, herein x, will be a local data.frame with the
columns of the input not in cols for the rows corresponding to key.
The output of func must be a data.frame matching schema –
in particular this means the names of the output data.frame are irrelevant
A SparkDataFrame.
gapply(GroupedData) since 2.0.0
gapply(SparkDataFrame) since 2.0.0
gapplyCollect
Other SparkDataFrame functions:
SparkDataFrame-class,
agg(),
alias(),
arrange(),
as.data.frame(),
attach,SparkDataFrame-method,
broadcast(),
cache(),
checkpoint(),
coalesce(),
collect(),
colnames(),
coltypes(),
createOrReplaceTempView(),
crossJoin(),
cube(),
dapplyCollect(),
dapply(),
describe(),
dim(),
distinct(),
dropDuplicates(),
dropna(),
drop(),
dtypes(),
exceptAll(),
except(),
explain(),
filter(),
first(),
gapplyCollect(),
getNumPartitions(),
group_by(),
head(),
hint(),
histogram(),
insertInto(),
intersectAll(),
intersect(),
isLocal(),
isStreaming(),
join(),
limit(),
localCheckpoint(),
merge(),
mutate(),
ncol(),
nrow(),
persist(),
printSchema(),
randomSplit(),
rbind(),
rename(),
repartitionByRange(),
repartition(),
rollup(),
sample(),
saveAsTable(),
schema(),
selectExpr(),
select(),
showDF(),
show(),
storageLevel(),
str(),
subset(),
summary(),
take(),
toJSON(),
unionAll(),
unionByName(),
union(),
unpersist(),
withColumn(),
withWatermark(),
with(),
write.df(),
write.jdbc(),
write.json(),
write.orc(),
write.parquet(),
write.stream(),
write.text()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | ## Not run:
# Computes the arithmetic mean of the second column by grouping
# on the first and third columns. Output the grouping values and the average.
df <- createDataFrame (
list(list(1L, 1, "1", 0.1), list(1L, 2, "1", 0.2), list(3L, 3, "3", 0.3)),
c("a", "b", "c", "d"))
# Here our output contains three columns, the key which is a combination of two
# columns with data types integer and string and the mean which is a double.
schema <- structType(structField("a", "integer"), structField("c", "string"),
structField("avg", "double"))
result <- gapply(
df,
c("a", "c"),
function(key, x) {
# key will either be list(1L, '1') (for the group where a=1L,c='1') or
# list(3L, '3') (for the group where a=3L,c='3')
y <- data.frame(key, mean(x$b), stringsAsFactors = FALSE)
}, schema)
# The schema also can be specified in a DDL-formatted string.
schema <- "a INT, c STRING, avg DOUBLE"
result <- gapply(
df,
c("a", "c"),
function(key, x) {
y <- data.frame(key, mean(x$b), stringsAsFactors = FALSE)
}, schema)
# We can also group the data and afterwards call gapply on GroupedData.
# For example:
gdf <- group_by(df, "a", "c")
result <- gapply(
gdf,
function(key, x) {
y <- data.frame(key, mean(x$b), stringsAsFactors = FALSE)
}, schema)
collect(result)
# Result
# ------
# a c avg
# 3 3 3.0
# 1 1 1.5
# Fits linear models on iris dataset by grouping on the 'Species' column and
# using 'Sepal_Length' as a target variable, 'Sepal_Width', 'Petal_Length'
# and 'Petal_Width' as training features.
df <- createDataFrame (iris)
schema <- structType(structField("(Intercept)", "double"),
structField("Sepal_Width", "double"),structField("Petal_Length", "double"),
structField("Petal_Width", "double"))
df1 <- gapply(
df,
df$"Species",
function(key, x) {
m <- suppressWarnings(lm(Sepal_Length ~
Sepal_Width + Petal_Length + Petal_Width, x))
data.frame(t(coef(m)))
}, schema)
collect(df1)
# Result
# ---------
# Model (Intercept) Sepal_Width Petal_Length Petal_Width
# 1 0.699883 0.3303370 0.9455356 -0.1697527
# 2 1.895540 0.3868576 0.9083370 -0.6792238
# 3 2.351890 0.6548350 0.2375602 0.2521257
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.