Description Usage Arguments Value Note Examples
Pivot a column of the GroupedData and perform the specified aggregation. There are two versions of pivot function: one that requires the caller to specify the list of distinct values to pivot on, and one that does not. The latter is more concise but less efficient, because Spark needs to first compute the list of distinct values internally.
1 2 |
x |
a GroupedData object |
colname |
A column name |
values |
A value or a list/vector of distinct values for the output columns. |
GroupedData object
pivot since 2.0.0
1 2 3 4 5 6 7 8 9 10 11 12 13 | ## Not run:
df <- createDataFrame(data.frame(
earnings = c(10000, 10000, 11000, 15000, 12000, 20000, 21000, 22000),
course = c("R", "Python", "R", "Python", "R", "Python", "R", "Python"),
period = c("1H", "1H", "2H", "2H", "1H", "1H", "2H", "2H"),
year = c(2015, 2015, 2015, 2015, 2016, 2016, 2016, 2016)
))
group_sum <- sum(pivot(groupBy(df, "year"), "course"), "earnings")
group_min <- min(pivot(groupBy(df, "year"), "course", "R"), "earnings")
group_max <- max(pivot(groupBy(df, "year"), "course", c("Python", "R")), "earnings")
group_mean <- mean(pivot(groupBy(df, "year"), "course", list("Python", "R")), "earnings")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.