SpatialDDLS-package | R Documentation |
Deconvolution of spatial transcriptomics data based on neural networks and single-cell RNA-seq data. SpatialDDLS implements a workflow to create neural network models able to make accurate estimates of cell composition of spots from spatial transcriptomics data using deep learning and the meaningful information provided by single-cell RNA-seq data. See Torroja and Sanchez-Cabo (2019) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.3389/fgene.2019.00978")} and Mañanes et al. (2024) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1093/bioinformatics/btae072")} to get an overview of the method and see some examples of its performance.
Maintainer: Diego Mañanes dmananesc@cnic.es (ORCID)
Authors:
Carlos Torroja ctorroja@cnic.es (ORCID)
Fatima Sanchez-Cabo fscabo@cnic.es (ORCID)
Useful links:
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.